Skip to main content

Advertisement

Log in

UTCI—Why another thermal index?

  • Special Issue (UTCI)
  • Published:
International Journal of Biometeorology Aims and scope Submit manuscript

Abstract

Existing procedures for the assessment of the thermal environment in the fields of public weather services, public health systems, precautionary planning, urban design, tourism and recreation and climate impact research exhibit significant shortcomings. This is most evident for simple (mostly two-parameter) indices, when comparing them to complete heat budget models developed since the 1960s. ISB Commission 6 took up the idea of developing a Universal Thermal Climate Index (UTCI) based on the most advanced multi-node model of thermoregulation representing progress in science within the last three to four decades, both in thermo-physiological and heat exchange theory. Creating the essential research synergies for the development of UTCI required pooling the resources of multidisciplinary experts in the fields of thermal physiology, mathematical modelling, occupational medicine, meteorological data handling (in particular radiation modelling) and application development in a network. It was possible to extend the expertise of ISB Commission 6 substantially by COST (a European programme promoting Cooperation in Science and Technology) Action 730 so that finally over 45 scientists from 23 countries (Australia, Canada, Israel, several Europe countries, New Zealand, and the United States) worked together. The work was performed under the umbrella of the WMO Commission on Climatology (CCl). After extensive evaluations, Fiala’s multi-node human physiology and thermal comfort model (FPC) was adopted for this study. The model was validated extensively, applying as yet unused data from other research groups, and extended for the purposes of the project. This model was coupled with a state-of-the-art clothing model taking into consideration behavioural adaptation of clothing insulation by the general urban population in response to actual environmental temperature. UTCI was then derived conceptually as an equivalent temperature (ET). Thus, for any combination of air temperature, wind, radiation, and humidity (stress), UTCI is defined as the isothermal air temperature of the reference condition that would elicit the same dynamic response (strain) of the physiological model. As UTCI is based on contemporary science its use will standardise applications in the major fields of human biometeorology, thus making research results comparable and physiologically relevant.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Notes

  1. The Indoor AT, which forms the basis of the US Heat Index, often used in outdoor applications by neglecting the prefix “Indoor” belongs to the simple two-parameter indices.

References

  • Blazejcyk K, Epstein Y, Jendritzky G, Staiger H, Tinz B (2011) Comparison of UTCI to selected thermal indices. Int J Biometeorol, this issue

  • Blazejczyk K (1994) New climatological- and -physiological model of the human heat balance outdoor (MENEX) and its applications in bioclimatological studies in different scales. Zeszyty IgiPZ PAN 28:27–58

    Google Scholar 

  • Bröde P, Kampmann B, Havenith G, Jendritzky G (2008) Effiziente Berechnung des klimatischen Belastungs-Index UTCI. In: Gesellschaft für Arbeitswissenschaft (ed.): Produkt- und Produktions-Ergonomie - Aufgabe für Entwickler und Planer, GfA-Press, Dortmund, pp 271–274

  • Bröde P, Fiala D, Blazejczyk K, Epstein Y, Holmér I, Jendritzky G, Kampmann B, Richards M, Rintamäki H, Shitzer A, Havenith G (2009a) Calculating UTCI Equivalent Temperature. In: Castellani JW, Endrusick TL (eds) Environmental Ergonomics XIII. University of Wollongong, Wollongong, pp 49–53

    Google Scholar 

  • Bröde P, Fiala D, Kampmann B, Havenith G, Jendritzky G (2009b) Der Klimaindex UTCI—Multivariate Analyse der Reaktion eines thermophysiologischen Simulationsmodells. In: Gesellschaft für Arbeitswissenschaft (ed.): Arbeit, Beschäftigungsfähigkeit und Produktivität im 21. Jahrhundert, GfA-Press, Dortmund, pp 705–708

  • Bröde P, Fiala D, Blazejcyk K, Holmér I, Jendritzky G, Kampmann B, Tinz B, Havenith G (2011) Deriving the operational procedure for the Universal Thermal Climate Index UTCI. Int J Biometeorol, this issue

  • Büttner K (1938) Physikalische Bioklimatologie. Probleme und Methoden. Akad. Verl. Ges, Leipzig

  • COST UTCI (2004) Towards a Universal Thermal Climate Index UTCI for Assessing the Thermal Environment of the Human Being. MoU of COST Action 730. www.utci.org: 17 pp

  • De Dear R, Pickup J (2000) An Outdoor Thermal Environment Index (OUT_SET*) - Part II - Applications. In: De Dear R, Kalma J, Oke T, Auliciems A (eds.), Biometeorology and Urban Climatology at the Turn of the Millennium. Selected Papers from the Conference ICB-ICUC'99 (Sydney, 8–12 November 1999). WMO, Geneva, WCASP-50, pp 258–290

  • Driscoll DM (1992) Thermal comfort indexes. Current uses and abuses. Nat Weather Digest 17(4):33–38

    Google Scholar 

  • Fanger PO (1970) Thermal comfort. Analysis and application in environment engineering. Danish Technical Press, Copenhagen

  • Fiala D, Lomas KJ, Stohrer M (1999) A computer model of human thermoregulation for a wide range of environmental conditions: the passive system. J Appl Physiol 87(5):1957–1972

    CAS  Google Scholar 

  • Fiala D, Lomas KJ, Stohrer M (2001) Computer prediction of human thermoregulatory and temperature responses to a wide range of environmental conditions. Int J Biometeorol 45:143–159

    Article  CAS  Google Scholar 

  • Fiala D, Lomas KJ, Stohrer M (2003) First principles modeling of thermal sensation responses in steady-state and transient conditions. ASHRAE Transactions: Research Vol. 109, Part I, pp 179–186

  • Fiala D, Lomas KJ, Stohrer M (2007) Dynamic simulation of human heat transfer and thermal comfort. In: Mekjavic IB, Kounalakis SN, Taylor NAS (eds) Environmental ergonomics XII. Biomed, Ljubljana, pp 513–515

    Google Scholar 

  • Fiala D, Psikuta A, Jendritzky G, Paulke S, Nelson DA, v Marken Lichtenbelt WD, Frijns AJH (2010) Physiological modelling for technical, clinical and research applications. Front Biosci S2:939–968

    Article  Google Scholar 

  • Fiala D, Havenith G, Bröde P, Kampmann B, Jendritzky G (2011) UTCI-Fiala multi-node model human heat transfer and thermal comfort. Int J Biometeorol, this issue

  • Gagge AP, Fobelets AP, Berglund PE (1986) A standard predictive index of human response to the thermal environment. ASHRAE Trans 92:709–731

    Google Scholar 

  • Havenith G (2001) An individual model of human thermoregulation for the simulation of heat stress response. J Appl Physiol 90:1943–1954

    CAS  Google Scholar 

  • Havenith G (2005) Temperature regulation, heat balance and climatic stress. In: Kirch W, Menne B, Bertollini R (eds) Extreme weather events and public health responses. Springer, Heidelberg, pp 69–80

  • Havenith G, Fiala D, Blazejcyk K, Richards M, Bröde P, Holmér I, Rintamäki H, Benshabat Y, Jendritzky G (2011) The UTCI clothing model. Int J Biometeorol, this issue

  • Höppe P (1984) Die Energiebilanz des Menschen. München Universitäts Schriften, Fachbereich Physic, Wissenschaftliche Mitteilungen 49

  • Höppe P (1999) The physiological equivalent temperature—a universal index for the biometeorological assessment of the thermal environment. Int J Biometeorol 43:71–75

    Article  Google Scholar 

  • Horikoshi T, Tsuchikawa T, Kurazumi Y, Matsubara N (1995) Mathematical expression of combined and separate effect of air temperature, humidity, air velocity and thermal radiation on thermal comfort. Arch Complex Environ Stud 7(3–4):9–12

    Google Scholar 

  • Horikoshi T, Einishi M, Tsuchikawa T, Imai H (1997) Geographical distribution and annual fluctuation of thermal environmental indices in Japan. Development of a new thermal environmental index for outdoors and its application. J Human–Environment System 1(1):87–92

    Google Scholar 

  • Huizenga C, Zhang H, Arens E (2001) A model of human physiology and comfort for assessing complex thermal environments. Build Environ 36:691–699

    Article  Google Scholar 

  • ISO 11079 (2007) Ergonomics of the thermal environment—determination and interpretation of cold stress when using required clothing insulation (IREQ) and local cooling effects. International Organisation for Standardisation, Geneva

    Google Scholar 

  • ISO 7243 (1989) Hot Environments; Estimation of the Heat Stress on Working Man, Based on the WBGT-Index (Wet Bulb Globe Temperature). International Organisation for Standardisation, Geneva

    Google Scholar 

  • ISO 7933 (2004) Ergonomics of the Thermal Environment - Analytical Determination and Interpretation of Heat Stress Using Calculation of the Predicted Heat Strain. International Organisation for Standardisation, Geneva

    Google Scholar 

  • Jendritzky G (1990) Bioklimatische Bewertungsgrundlage der Räume am Beispiel von mesoskaligen Bioklimakarten. In: Jendritzky G, Schirmer H, Menz G, Schmidt-Kessen W: Methode zur raumbezogenen Bewertung der thermischen Komponente im Bioklima des Menschen (Fortgeschriebenes Klima-Michel-Modell). Akad Raumforschung Landesplanung, Hannover. Beiträge 114:7–69

    Google Scholar 

  • Jendritzky G, de Dear R (2009) Adaptation and thermal environment. In: Ebi KL, Burton I, McGregor GR (eds.) Biometeorology for adaptation to climate variability and change. Biometeorology 1, Springer, Berlin, pp 9–32

  • Jendritzky G, Nübler W (1981) A model analysing the urban thermal environment in physiologically significant terms. Arch Met Geoph Biokl B 29(4):313–326

    Article  Google Scholar 

  • Jendritzky G, Sönning W, Swantes HJ (1979) Ein objektives Bewertungsverfahren zur Beschreibung des thermischen Milieus in der Stadt- und Landschaftsplanung (“Klima-Michel-Modell”). Beiträge Akad. Raumforschung Landesplanung, 28, Hannover

  • Jendritzky G, Maarouf A, Fiala D, Staiger H (2002) An update on the development of a Universal Thermal Climate Index. 15th Conf. Biomet. Aerobiol. and 16th ICB02, 27 Oct – 1 Nov 2002, Kansas City, AMS, pp 129–133

  • Kampmann B, Bröde P (2009) Physiological responses to temperature and humidity compared with predictions of PHS and WBGT. In: Castellani JW, Endrusick TL (eds) Environmental ergonomics XIII. University of Wollongong, Wollongong, pp 54–58

    Google Scholar 

  • Kampmann B, Broede P, Fiala D (2011) Physiological responses to temperature and humidity compared to the assessment by UTCI, WGBT and PHS. Int J Biometeorol, this issue

  • Konz S, Hwang C, Dhiman B, Duncan J, Masud A (1977) An experimental validation of mathematical simulation of human thermoregulation. Comput Biol Med 7:71–82

    Article  CAS  Google Scholar 

  • Koppe C, Kovats S, Jendritzky G, Menne B (2004) Heat-waves: risks and responses. World Health Organization. Health and Global Environmental Change, Series, No. 2, Copenhagen, Denmark

  • Landsberg HE (1972) The assessment of human bioclimate, a limited review of physical parameters. World Meteorological Organization, Technical Note No. 123, WMO-No. 331, Geneva

  • Matzarakis A, Rutz F, Mayer H (2007) Modelling radiation fluxes in simple and complex environments—application of the RayMan model. Int J Biometeorol 51:323–334

    Article  Google Scholar 

  • Osczevski R, Bluestein M (2005) The new wind chill equivalent temperature chart. Bull Am Meteorol Soc 86(10):1453–1458

    Article  Google Scholar 

  • Parsons KC (2003) Human thermal environments: the effects of hot, moderate, and cold environments on human health, comfort and performance. Taylor & Francis, London

  • Pickup J, de Dear R (2000) An Outdoor Thermal Comfort Index (OUT_SET*). Part I–The model and its assumptions. In: de Dear R, Kalma J, Oke T, Auliciems A (eds) Biometeorology and urban climatology at the turn of the millenium. Selected Papers from the Conference ICB-ICUC'99 (Sydney, 8–12 November 1999). WMO, Geneva, WCASP-50, pp 279–283

  • Psikuta A (2009) Development of an ‘artificial human’ for clothing research. PhD Thesis, IESD, De Montfort University, Leicester, UK

  • Psikuta A, Fiala D, Richards M (2007) Validation of the Fiala Model of Human Physiology and Comfort for COST 730. In: Mekjavic IB, Kounalakis SN, Taylor NAS (eds) Proceedings of the 12th International Conference on Environmental Ergonomics XII. Biomed, Ljubljana, p 516

    Google Scholar 

  • Psikuta A, Fiala D, Laschewski D, Jendritzky G, Richards M, Blazejcyk K, Mekjavic I, Rintamäki H, de Dear R, Havenith G (2011) Evaluation of Fiala multi-node thermo-physiological model for UTCI application. Int J Biometeorol, this issue

  • Richards M, Havenith G (2007) Progress towards the final UTCI model. In: Mekjavic IB, Kounalakis SN, Taylor NAS (eds) Proceedings of the 12th International Conference on Environmental Ergonomics. 19–24 August 2007. Biomed, Ljubljana, Piran Slovenia, pp 521–524

  • Shitzer A (2006) Wind-chill-equivalent temperatures: regarding the impact due to the variability of the environmental convective heat transfer coefficient. Int J Biometeorol 50(4):224–232

    Article  Google Scholar 

  • Shitzer A, De Dear R (2006) Inconsistencies in the “new” wind chill chart at low wind speeds. J Appl Meteorol Climatol 45:787–790

    Google Scholar 

  • Shitzer A, Tikuisis P (2011) Advances, shortcomings, and recommendations for wind chill estimation. Int J Biometeorol, this issue

  • Staiger H, Bucher K, Jendritzky G (1997) Gefühlte Temperatur. Die physiologisch gerechte Bewertung von Wärmebelastung und Kältestress beim Aufenthalt im Freien in der Maßzahl Grad Celsius. Ann Meteorol Deutscher Wetterdienst, Offenbach 33:100–107

    Google Scholar 

  • Steadman RG (1984) A universal scale of apparent temperature. J Climate Appl Meteorol 23:1674–1687

    Article  Google Scholar 

  • Steadman RG (1994) Norms of apparent temperature in Australia. Aust Met Mag 43:1–16

    Google Scholar 

  • Stolwijk JAJ (1971) A mathematical model of physiological temperature regulation in man. NASA contractor report, NASA CR-1855, Washington DC

  • Tanabe SI, Kobayashi K, Nakano J, Ozeki Y, Konishi M (2002) Evaluation of thermal comfort using combined multi-node thermoregulation (65MN) and radiation models and computational fluid dynamics (CFD). Energ Buildings 34:637–646

    Article  Google Scholar 

  • Tikuisis P, Osczevski RJ (2002) Dynamic model of facial cooling. J Appl Meteor 41:1241–1246

    Article  Google Scholar 

  • Tikuisis P, Osczevski RJ (2003) Facial cooling during cold air exposure. BAMS July 2003:927–934

    Article  Google Scholar 

  • VDI (2008) Environmental meteorology. Methods for the human biometeorological evaluation of climate and air quality for urban and regional planning. Verein Deutscher Ingenieure VDI. Part I: Climate. Beuth, Berlin

  • Weihs P, Staiger H, Tinz B, Batchvarova E, Rieder H, Bröde P, Vuillemier L, Jendritzky G (2011) The uncertainty of UTCI due to uncertainties in the determination of radiation fluxes derived from measured and observed meteorological data. Int J Biometeorol, this issue

  • Wissler EH (1985) Mathematical simulation of human thermal behavior using whole body models. In: Shitzer A, Eberhart RC (eds) Heat transfer in medicine and biology—analysis and applications. Plenum, New York, pp 325–373

    Google Scholar 

Download references

Acknowledgements

The UTCI project was performed within COST Action 730, funded by the European Union TRD Framework Programme and the International Society of Biometeorology Commission 6, under the umbrella of the World Meteorological Organization’s Commission on Climatology CCl.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gerd Jendritzky.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jendritzky, G., de Dear, R. & Havenith, G. UTCI—Why another thermal index?. Int J Biometeorol 56, 421–428 (2012). https://doi.org/10.1007/s00484-011-0513-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00484-011-0513-7

Keywords

Navigation