Skip to main content
Log in

Vulnerability models for environmental risk assessment. Application to a nuclear power plant containment building

  • Original Paper
  • Published:
Stochastic Environmental Research and Risk Assessment Aims and scope Submit manuscript

Abstract

Environmental risk management consists of making decisions on human activities or construction designs that are affected by the environment and/or have consequences or impacts on it. In these cases, decisions are made such that risk is minimized. In this regard, the forthcoming paper develops a close form that relates risk with cost, hazard, and vulnerability; and then focuses on vulnerability. The vulnerability of a system under an external action can be described by the conditional probability of the degrees of damage after an event. This vulnerability model can be obtained by a simplicial regression of those outputs, as a response variable, on explanatory variables. After a theoretical explanation, the authors present the case study of a nuclear power plant containment building. Once a given overpressure is registered inside the containment building, three possible outputs are to be considered: serviceability, breakdown, and collapse. The study consists of three steps: (a) modelling the containment building using the finite element method; (b) given an overpressure, simulating uncertain parameters related to material constitutive equations in order to obtain the corresponding proportions; (c) performing a simplicial regression to obtain a meaningful vulnerability model. The simulation provides normalized-to-unity outputs under the overpressure conditions. The obtained vulnerability model is in definite correspondence with previous results in nuclear power plant safety analysis reports.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Aguado A, Vives A, Egozcue J, Mirambell E (1991) Consideraciones sobre las bandas de tolerancia de la fuerza de pretensado en edificios de contención de centrales nucleares. 2as Jornadas Ibero-Latinoamericanas del Hormigón Pretensado 481–508

  • Aitchison J (1986) The statistical analysis of compositional data. Monographs on statistics and applied probability. Chapman & Hall Ltd., London. (Reprinted in 2003 with additional material by The Blackburn Press)

  • Aitchison J, Shen SM (1980) Logistic-normal distributions: some properties and uses. Biometrika 67(2):261–272

    Article  Google Scholar 

  • Aitchison J, Barceló-Vidal C, Egozcue JJ, Pawlowsky-Glahn V (2002) A concise guide for the algebraic-geometric structure of the simplex, the sample space for compositional data analysis. In: Bayer U, Burger H, Skala W (eds), Proceedings of IAMG’2002—the annual conference of the International Association for Mathematical Geosciences, Vol I and II, pp 387–392. Selbstverlag der Alfred-Wegener-Stiftung, Berlin

  • Barbat AH, Cervera M, Cirauqui C, Hanganu A, Oñate E (1995) Evaluación de la presión de fallo del edificio de contención de una central nuclear tipo PWR-W. Parte 2: Simulación numérica. Revista Internacional de Métodos Numéricos para Cálculo y Diseño en Ingeniería 11:451–475

    Google Scholar 

  • Benjamin JR, Cornell AC (1981) Probabilidad y Estadística en Ingeniería Civil. McGraw-Hill, Bogotá 685 p

    Google Scholar 

  • Cervera M, Barbat AH, Hanganu A, Oñate E, Cirauqui C (1995) Evaluación de la presión de fallo del edificio de contención de una central nuclear tipo PWR-W. Parte 1: Metodología. Revista Internacional de Métodos Numéricos para Cálculo y Diseño en Ingeniería 11:271–294

    Google Scholar 

  • Consejo de Seguridad Nuclear (2011) Pruebas de resistencia realizadas a las centrales nucleares españolas. Informe final tras el accidente de Fuckushima Daiichi

  • Crusells-Girona M (2011) Design criteria of containment buildings for nuclear power plants. Revista de Obras Públicas 158(3523):31–46

    Google Scholar 

  • Egozcue JJ (2009) Reply to “On the Harker variation diagrams;..” by J. A. Cortés. Math Geosci 41(7):829–834

    Article  Google Scholar 

  • Egozcue JJ, Daunis-i-Estadella J, Pawlowsky-Glahn V, Hron K, Filzmoser P (2012) Simplicial regression. The normal model. J Appl Prob Stat (JAPS) 6(1—-2):87–108

    Google Scholar 

  • Egozcue JJ, Pawlowsky-Glahn V (2005) Groups of parts and their balances in compositional data analysis. Math Geol 37(7):795–828

    Article  Google Scholar 

  • Egozcue JJ, Pawlowsky-Glahn V, Mateu-Figueras G, Barceló-Vidal C (2003) Isometric logratio transformations for compositional data analysis. Math Geol 35(3):279–300

    Article  Google Scholar 

  • Embrechts P, Klppelberg C, Mikosch T (1997) Modelling extremal values. Springer Verlag, Berlin

    Book  Google Scholar 

  • Hammersley JM, Handscom J (1964) Monte Carlo methods. Springer, New York

    Book  Google Scholar 

  • Hibbitt K, Sorensen (2002) ABAQUS/CAE user’s manual. Hibbitt, Karlsson & Sorensen, Incorporated, Pawtucke

    Google Scholar 

  • International Atomic Energy Agency (2001) Risk management: a tool for improving nuclear power plant performance. IAEA-TECDOC-1209

  • Jankowiak T, Lodygowski T (2013) Identification of parameters of concrete damage plasticity constitutive model

  • Lubliner J, Oliver J, Oller S, Onate E (1989) A plastic-damage model for concrete. Int J Solids Struct 25(3):299–326

    Article  Google Scholar 

  • Pawlowsky-Glahn V, Egozcue JJ (2001) Geometric approach to statistical analysis on the simplex. Stoch Environ Res Risk Assess (SERRA) 15(5):384–398

    Article  Google Scholar 

  • Pawlowsky-Glahn V, Egozcue JJ, Tolosana-Delgado R (2015) Modeling and analysis of compositional data. Statistics in practice. Wiley, Chichester

    Google Scholar 

  • Tolosana-Delgado R, van den Boogaart K (2011) Linear models with compositions in R, Ch 26. In: Pawlowsky-Glahn V, Buccianti A (eds) Compositional data analysis: theory and applications. Wiley, Chichester

    Google Scholar 

  • Tolosana-Delgado R, von Eynatten H (2009) Grain-size control on petrographic composition of sediments: compositional regression and rounded zeroes. Math Geosci 41:869–886

    Article  CAS  Google Scholar 

  • U.S. Nuclear Regulatory Commission (1984) Probabilistic safety analysis procedures guide. NUREG/CR-2815

  • U.S. Nuclear Regulatory Commission (2006) Containment integrity research at sandia national laboratories. an overview. NUREG/CR-6906

  • U.S. Nuclear Regulatory Commission (2007) Design limits, loading combinations, materials, construction, and testing of concrete containments. Regulatory Guide 1.201. Revision 1

  • U.S. Nuclear Regulatory Commission (2010) Containment structural integrity evaluation for internal pressure loadings above design-basis pressure. Regulatory Guide 1:216

  • U.S. Nuclear Regulatory Commission (2015) Guidelines for categorizing structures, systems, and components in nuclear power plants according to their safety significance. Regulatory Guide 1.136. Revision 3

Download references

Acknowledgments

This research has been supported by the Spanish Ministry of Education, Culture, and Sports under a scholarship (BOE n. 190, August 9th, 2012) to collaborate with the Department of Applied Mathematics III at UPC-BarcelonaTech from September 2012 to June 2013. The research has also been supported by the Spanish Ministry of Science and Technology under projects ‘Ingenio Mathematica (i-MATH)’ (Ref. No. CSD2006-00032) and ‘CODA-RSS’ (Ref. MTM2009-13272); from the Spanish Ministry of Economy and Competitiveness under the project ‘METRICS’ (Ref. MTM2012-33236), and from the Agència de Gestió d’Ajuts Universitaris i de Recerca of the Generalitat de Catalunya under the project Ref. 2009SGR424.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Musolas.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Musolas, A., Egozcue, J.J. & Crusells-Girona, M. Vulnerability models for environmental risk assessment. Application to a nuclear power plant containment building. Stoch Environ Res Risk Assess 30, 2287–2301 (2016). https://doi.org/10.1007/s00477-015-1179-1

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00477-015-1179-1

Keywords

Navigation