Skip to main content
Log in

A universal kriging approach for spatial functional data

  • Original Paper
  • Published:
Stochastic Environmental Research and Risk Assessment Aims and scope Submit manuscript

Abstract

In a wide range of scientific fields the outputs coming from certain measurements often come in form of curves. In this paper we give a solution to the problem of spatial prediction of non-stationary functional data. We propose a new predictor by extending the classical universal kriging predictor for univariate data to the context of functional data. Using an approach similar to that used in univariate geostatistics we obtain a matrix system for estimating the weights of each functional variable on the prediction. The proposed methodology is validated by analyzing a real dataset corresponding to temperature curves obtained in several weather stations of Canada.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Berg C, Forst G (1975) Potential theory on locally compact Abelian groups. Springer, Berlin

    Book  Google Scholar 

  • Chan K, Oates ASA, Hayes R, Dear B, Peoples M (2006) Agronomic consequences of tractor wheel compaction on a clay soil. Soil Tillage Res 89:13–21

    Article  Google Scholar 

  • Cressie N (1993) Statistic for spatial data. Wiley, New York

    Google Scholar 

  • Febrero-Bande M (2008) A present overview on functional data analysis. BEIO 24(1):6–12

    Google Scholar 

  • Ferraty F, Vieu P (2006) Non-parametric functional data analysis. Theory and practice. Springer, New York

    Google Scholar 

  • Friman O, Borga M, Lundberg P, Knutsson H (2004) Detection and detrending in fMRI data analysis. Neuroimage 22:645–655

    Article  Google Scholar 

  • Giraldo R (2009) Geostatistical analysis of functional data. PhD Thesis, Universitat Politécnica de Catalunya

  • Giraldo R, Delicado P, Mateu J (2011) Ordinary kriging for function-valued spatial data. Environ Ecol Stat 18(3):411–426

    Article  Google Scholar 

  • Goulard M, Voltz M (1993) Geostatistical interpolation of curves: a case study in soil science. In: Soares A (ed) Geostatistics Tróia ’92, vol 2. Kluwer Academic Press, Boston, pp 805–816

    Chapter  Google Scholar 

  • Hollander T, Wolfe D (1999) Nonparametric statistical methods. Wiley, New York

    Google Scholar 

  • Labat D, Ababou R, Mangin A (1999) Linear and nonlinear input/output models for karstic springflow and flood prediction at different time scales. Stoch Environ Res Risk Assess 13(5):337–364

    Article  Google Scholar 

  • Mohsin M, Gebhardt A, Pilz J, Spöck G (2012) A new bivariate gamma distribution generated from functional scale parameter with application to drought data. Stoch Environ Res Risk Assess doi:10.1007/s00477-012-0641-6

    Google Scholar 

  • Oliver J (ed) (2004) Encyclopedia of world climatology. Springer, Dordrecht

  • Ramsay J, Dalzell C (1991) Some tools for functional data analysis. J R Stat Soc B 53:539–572

    Google Scholar 

  • Ramsay J, Silverman B (2005) Functional data analysis. Springer, New York

    Google Scholar 

  • Reyes C (2010) Estimación paramétrica y no paramétrica de la tendencia en datos con dependencia espacial. Un estudio de simulación. Technical report, Universidad Santiago de Compostela

  • Ruiz-Medina MD, Fernández-Pascual R (2010) Spatiotemporal filtering from fractal spatial functional data sequence. Stoch Environ Res Risk Assess 24:527–538

    Article  Google Scholar 

  • Ruiz-Medina MD, Salmerón R (2010) Functional maximum-likelihood estimation of arh(p) models. Stoch Environ Res Risk Assess 24:131–146

    Article  Google Scholar 

  • Salmerón R, Ruiz-Medina MD (2009) Multi-spectral decomposition of functional autoregressive models. Stoch Environ Res Risk Assess 23(3):289–297

    Article  Google Scholar 

  • Vandenberghe V, Goethals P, Van Griensven A, Meirlaen J, De Pauw N, Vanrolleghem P, Bauwens W (2005) Application of automated measurement stations for continuous water quality monitoring of the Dender River in Flanders, Belgium. Environ Monit Assess 108:85–98

    Article  CAS  Google Scholar 

  • Ver Hoef J, Cressie N (1993) Multivariable spatial prediction. Math Geol 25:219–240

    Article  Google Scholar 

  • Zhang WJ, Liu G, Dai HQ (2008) Spatiotemporal filtering from fractal spatial functional data sequence. Stoch Environ Res Risk Assess 22(1):123–133

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ramón Giraldo.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Caballero, W., Giraldo, R. & Mateu, J. A universal kriging approach for spatial functional data. Stoch Environ Res Risk Assess 27, 1553–1563 (2013). https://doi.org/10.1007/s00477-013-0691-4

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00477-013-0691-4

Keywords

Navigation