Skip to main content
Log in

Shoot organogenesis from roots of seabuckthorn (Hippophaë rhamnoides L.): structure, initiation and effects of phosphorus and auxin

  • Original Article
  • Published:
Trees Aims and scope Submit manuscript

Abstract

Key message

Shoots from roots formed on seedlings in vitro in the groove of lateral roots as on plants growing in a natural habitat. The finding has ecological and applied relevance.

Abstract

Shoot organogenesis from roots (root suckers, shoots from roots, SfRs) allows vegetative propagation of the small tree seabuckthorn (Hippophaë rhamnoides L.) in addition to sexual propagation and is an important trait associated with the root system. Using an in vitro system, we studied initiation, localization and development of SfRs and interacting roles of phosphorus (P) and indole-3-acetic acid (IAA). After transfer of seedlings to the W4 medium (WPM medium with added IAA, benzyl adenine and giberellic acid), SfRs protruded after 2 weeks from the primary root initially at the groove of lateral roots (LR) as seen by scanning electron microscopy and light microscopy. This is also the location of SfRs on plants growing in natural conditions, which suggests a similar developmental pathway. To localize SfR initiation, staining by the DNA-binding fluorochrome 4′,6-diamidino-2-phenylindole in root cross sections revealed a high density of small cells as in meristems in the pericycle area between endodermis and vascular tissue. During 8–10 weeks, SfRs emerged also in other positions on the primary root, concomitantly with senescence of existing LRs and suppression of new LR formation. Since SfR formed in relation to LRs, we hypothesized that P and IAA play a role in SfR formation. Highest production of SfRs occurred in W4 medium after pre-treatment with high P in the presence of IAA while LR production in WPM was stimulated by IAA in low and middle P. SfRs developed in vitro on seedlings originating from three subspecies of H. rhamnoides showing this trait to be common. This experimental system allowed studies of organogenesis of SfRs and LRs in response to plant growth regulators, P and IAA and may be further implemented in basic studies and in applied clonal propagation of seabuckthorn.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

BA:

Benzyl adenine

DAPI:

4′,6-Diamidino-2-phenylindole

GA:

Gibberrelic acid (GA3)

IAA:

Indole-3-acetic acid

LR:

Lateral root

PGR:

Plant growth regulator

PM:

Plain medium, agar-phytagel in water

SfR:

Shoot-from-root

WPM:

Woody plant medium

References

  • Atta R, Laurens L, Boucheron-Dubuisson E, Guivarc’h A, Carnero E, Giraudat-Pautot V, Rech P, Chriqui D (2009) Pluripotency of Arabidopsis xylem pericycle underlies shoot regeneration from root and hypocotyl explants grown in vitro. Plant J 57(4):626–644. doi:10.1111/j.1365-313X.2008.03715.x

    Article  CAS  PubMed  Google Scholar 

  • Bruvelius A (2003) Sea buckthorn cultivation in Baltic States. In: Mörsel JT, Thies S (eds) Proceeding of the 1st congress of the international seabuckthorn association, Berlin, Germany, September 2003, pp 64–66

  • Chatfield SP, Capron R, Severino A, Penttila PA, Alfred S, Nahal H, Provart NJ (2013) Incipient stem cell niche conversion in tissue culture: using a systems approach to probe early events in WUSCHEL-dependent conversion of lateral root primordia into shoot meristems. Plant J 73(5):798–813. doi:10.1111/tpj.12085

    Article  CAS  PubMed  Google Scholar 

  • Chiou TJ, Lin SI (2011) Signaling network in sensing phosphate availability in plants. Annu Rev Plant Biol 62:185–206. doi:10.1146/annurev-arplant-042110-103849

    Article  CAS  PubMed  Google Scholar 

  • Claeys H, De Bodt S, Inze D (2014) Gibberellins and DELLAs: central nodes in growth regulatory networks. Trends Plant Sci 19(4):231–239. doi:10.1016/j.tplants.2013.10.001

    Article  CAS  PubMed  Google Scholar 

  • da Silva C, de Oliveira L, Loriato V, da Silva L, de Campos J, Viccini L, de Oliveira E, Otoni W (2011) Organogenesis from root explants of commercial populations of Passiflora edulis Sims and a wild passionfruit species, P. cincinnata Masters. Plant Cell Tissue Organ Cult (PCTOC) 107(3):407–416. doi:10.1007/s11240-011-9991-x

  • De Smet I, Tetsumura T, De Rybel B, Frei dit Frey N, Laplaze L, Casimiro I, Swarup R, Naudts M, Vanneste S, Audenaert D, Inze D, Bennett MJ, Beeckman T (2007) Auxin-dependent regulation of lateral root positioning in the basal meristem of Arabidopsis. Development 134(4):681–690. doi:10.1242/dev.02753

  • Del Tredici P (2001) Sprouting in temperate trees: a morphological and ecological review. Bot Rev 67(2):121–140

    Article  Google Scholar 

  • Dello Ioio R, Linhares FS, Scacchi E, Casamitjana-Martinez E, Heidstra R, Costantino P, Sabatini S (2007) Cytokinins determine Arabidopsis root-meristem size by controlling cell differentiation. Curr Biol 17(8):678–682. doi:10.1016/j.cub.2007.02.047

    Article  CAS  PubMed  Google Scholar 

  • DeWoody J, Rowe CA, Hipkins VD, Mock KE (2008) “Pando” lives: molecular genetic evidence of a giant aspen clone in central Utah. West North Am Nat 68(4):493–497. doi:10.3398/1527-0904-68.4.493

    Article  Google Scholar 

  • Dolan L, Janmaat K, Willemsen V, Linstead P, Poethig S, Roberts K, Scheres B (1993) Cellular organisation of the Arabidopsis thaliana root. Development 119(1):71–84

    CAS  PubMed  Google Scholar 

  • Dubrovsky JG, Rost TL (2012) Pericycle. In: eLS. Wiley, Chichester. doi:10.1002/9780470015902.a0002085.pub2

  • Dubrovsky JG, Sauer M, Napsucialy-Mendivil S, Ivanchenko MG, Friml J, Shishkova S, Celenza J, Benkova E (2008) Auxin acts as a local morphogenetic trigger to specify lateral root founder cells. Proc Natl Acad Sci USA 105(25):8790–8794. doi:10.1073/pnas.0712307105

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Duclercq J, Sangwan-Norreel B, Catterou M, Sangwan RS (2011) De novo shoot organogenesis: from art to science. Trends Plant Sci. doi:10.1016/j.tplants.2011.08.004

    PubMed  Google Scholar 

  • Eliasson L (1971) Growth regulators in Populus tremula IV. Apical dominance and suckering in young plants. Physiol Plant 25:263–267

    Article  Google Scholar 

  • Frey BR, Lieffers VJ, Landhäusser SM, Comeau PG, Greenway KJ (2003) An analysis of sucker regeneration of trembling aspen. Can J For Res 33:1169–1179. doi:10.1139/X03-053

    Article  Google Scholar 

  • Fukaki H, Tasaka M (2009) Hormone interactions during lateral root formation. Plant Mol Biol 69(4):437–449. doi:10.1007/s11103-008-9417-2

    Article  CAS  PubMed  Google Scholar 

  • Garay-Arroyo A, De La Paz Sanchez M, Garcia-Ponce B, Azpeitia E, Alvarez-Buylla ER (2012) Hormone symphony during root growth and development. Dev Dyn 241(12):1867–1885. doi:10.1002/dvdy.23878

    Article  CAS  PubMed  Google Scholar 

  • Gentili F, Huss-Danell K (2003) Local and systemic effects of phosphorus and nitrogen on nodulation and nodule function in Alnus incana. J Exp Bot 54(393):2757–2767. doi:10.1093/jxb/erg311

    Article  CAS  PubMed  Google Scholar 

  • Gentili F, Wall LG, Huss-Danell K (2006) Effects of phosphorus and nitrogen on nodulation are seen already at the stage of early cortical cell divisions in Alnus incana. Ann Bot 98(2):309–315. doi:10.1093/aob/mcl109

    Article  PubMed Central  PubMed  Google Scholar 

  • Gonzalez-Rizzo S, Crespi M, Frugier F (2006) The Medicago truncatula CRE1 cytokinin receptor regulates lateral root development and early symbiotic interaction with Sinorhizobium meliloti. Plant Cell Online 18(10):2680–2693. doi:10.1105/tpc.106.043778

    Article  CAS  Google Scholar 

  • Guerrero-Campo J, Palacio S, Perez-Rontome C, Montserrat-Marti G (2006) Effect of root system morphology on root-sprouting and shoot-rooting abilities in 123 plant species from eroded lands in North-east Spain. Ann Bot 98(2):439–447. doi:10.1093/aob/mcl122

    Article  PubMed Central  PubMed  Google Scholar 

  • Jain A, Poling MD, Karthikeyan AS, Blakeslee JJ, Peer WA, Titapiwatanakun B, Murphy AS, Raghothama KG (2007) Differential effects of sucrose and auxin on localized phosphate deficiency-induced modulation of different traits of root system architecture in Arabidopsis. Plant Physiol 144(1):232–247

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Jain A, Nagarajan VK, Raghothama KG (2012) Transcriptional regulation of phosphate acquisition by higher plants. Cell Mol Life Sci CMLS 69(19):3207–3224. doi:10.1007/s00018-012-1090-6

    Article  CAS  PubMed  Google Scholar 

  • Jeppsson N, Trajkovski V (2003) Research and development of sea buckthorn in Sweden. Seabuckthorn (Hippophae L.)—a multipurpose wonder plant, vol I, Botany, Harvesting and Processing Technologies Indus Publishing Company, New Delhi, pp 494–498

  • Kavanová M, Lattanzi FA, Grimoldi AA, Schnyder H (2006) Phosphorus deficiency decreases cell division and elongation in grass leaves. Plant Physiol 141(2):766–775. doi:10.1104/pp.106.079699

    Article  PubMed Central  PubMed  Google Scholar 

  • Kazan K (2013) Auxin and the integration of environmental signals into plant root development. Ann Bot 112(9):1655–1665. doi:10.1093/aob/mct229

    Article  PubMed Central  PubMed  Google Scholar 

  • Kondrashov V (1976) The best sea buckthorn forms. Horticulture 8:20–21

    Google Scholar 

  • Landhäusser SM, Lieffers VJ, Mulak T (2006) Effects of soil temperature and time of decapitation on sucker initiation of intact Populus tremuloides root systems. Scand J For Res 21(4):299–305

    Article  Google Scholar 

  • Lavenus J, Goh T, Roberts I, Guyomarc’h S, Lucas M, De Smet I, Fukaki H, Beeckman T, Bennett M, Laplaze L (2013) Lateral root development in Arabidopsis: fifty shades of auxin. Trends Plant Sci 18(8):450–458. doi:10.1016/j.tplants.2013.04.006

    Article  CAS  PubMed  Google Scholar 

  • Lloyd G, McCown BH (1981) Commercially-feasible micropropagation of Mountain Laurel, Kalmia latifolia, by shoot tip culture. Proc Int Plant Prop Soc 30:421–427

    Google Scholar 

  • Lombardi S, Passos I, Nogueira M, Appezato-da-Glo´ria B (2007) In vitro shoot regeneration from roots and leaf discs of Passiflora cincinnata Mast. Braz Arch Biol Biotech 50:239–247. doi:10.1590/S1516-89132007000200009

  • López-Bucio J, Hernández-Abreu E, Sánchez-Calderón L, MaF Nieto-Jacobo, Simpson J, Herrera-Estrella L (2002) Phosphate availability alters architecture and causes changes in hormone sensitivity in the Arabidopsis root system. Plant Physiol 129(1):244–256

    Article  PubMed Central  PubMed  Google Scholar 

  • López-Bucio J, Cruz-Ramírez A, Herrera-Estrella L (2003) The role of nutrient availability in regulating root architecture. Curr Opin Plant Biol 6(3):280–287. doi:10.1016/s1369-5266(03)00035-9

  • Lundquist P-O, Näsholm T, Huss-Danell K (2003) Nitrogenase activity and root nodule metabolism in response to O2 and short-term N2 deprivation in dark-treated Frankia-Alnus incana plants. Physiol Plant 119(2):244–252. doi:10.1034/j.1399-3054.2003.00177.x

    Article  CAS  Google Scholar 

  • Lux A, Morita S, Abe J, Ito K (2005) An improved method for clearing and staining free-hand sections and whole-mount samples. Ann Bot 96(6):989–996. doi:10.1093/aob/mci266

    Article  PubMed Central  PubMed  Google Scholar 

  • Moubayidin L, Di Mambro R, Sabatini S (2009) Cytokinin-auxin crosstalk. Trends Plant Sci 14(10):557–562. doi:10.1016/j.tplants.2009.06.010

    Article  CAS  PubMed  Google Scholar 

  • O’Rourke JA, Yang SS, Miller SS, Bucciarelli B, Liu J, Rydeen A, Bozsoki Z, Uhde-Stone C, Tu ZJ, Allan D (2013) An RNA-seq transcriptome analysis of orthophosphate-deficient white lupin reveals novel insights into phosphorus acclimation in plants. Plant Physiol 161(2):705–724

    Article  PubMed Central  PubMed  Google Scholar 

  • Paula S, Pausas JG (2011) Root traits explain different foraging strategies between resprouting life histories. Oecologia 165(2):321–331. doi:10.1007/s00442-010-1806-y

    Article  PubMed  Google Scholar 

  • Peret B, Middleton AM, French AP, Larrieu A, Bishopp A, Njo M, Wells DM, Porco S, Mellor N, Band LR, Casimiro I, Kleine-Vehn J, Vanneste S, Sairanen I, Mallet R, Sandberg G, Ljung K, Beeckman T, Benkova E, Friml J, Kramer E, King JR, De Smet I, Pridmore T, Owen M, Bennett MJ (2013) Sequential induction of auxin efflux and influx carriers regulates lateral root emergence. Mol Syst Biol 9:699. doi:10.1038/msb.2013.43

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Perez-Torres CA, Lopez-Bucio J, Cruz-Ramirez A, Ibarra-Laclette E, Dharmasiri S, Estelle M, Herrera-Estrella L (2008) Phosphate availability alters lateral root development in Arabidopsis by modulating auxin sensitivity via a mechanism involving the TIR1 auxin receptor. Plant Cell Online 20(12):3258–3272. doi:10.1105/tpc.108.058719

    Article  CAS  Google Scholar 

  • Qiao M, Zhao ZJ, Xiang FN (2012) Arabidopsis thaliana in vitro shoot regeneration is impaired by silencing of TIR1. Biol Plant 56(3):409–414. doi:10.1007/s10535-011-0233-1

    Article  CAS  Google Scholar 

  • Robbins NE, Trontin C, Duan L, Dinneny JR (2014) Beyond the barrier: communication in the root through the endodermis. Plant Physiol 166(2):551–559. doi:10.1104/pp.114.244871

    Article  PubMed Central  PubMed  Google Scholar 

  • Rocha DI, Vieira LM, Tanaka FAO, Silva LCd, Otoni WC (2012) Anatomical and ultrastructural analyses of in vitro organogenesis from root explants of commercial passion fruit (Passiflora edulis Sims). Plant Cell Tissue Organ Cult (PCTOC) 111(1):69–78. doi:10.1007/s11240-012-0171-4

  • Sassi M, Vernoux T (2013) Auxin and self-organization at the shoot apical meristem. J Exp Bot 64(9):2579–2592. doi:10.1093/jxb/ert101

    Article  CAS  PubMed  Google Scholar 

  • Schier GA (1972) Notes: apical dominance in multishoot cultures from aspen roots. For Sci 18:147–149

    Google Scholar 

  • Shah SRU, Agback P, Lundquist P-O (2015) Root morphology and cluster root formation by seabuckthorn (Hippophaë rhamnoides L.) in response to nitrogen, phosphorus and iron deficiency. Plant Soil. doi: 10.1007/s11104-015-2598-y

  • Sriskandarajah S, Lundquist P-O (2009) High frequency shoot organogenesis and somatic embryogenesis in juvenile and adult tissues of seabuckthorn (Hippophae rhamnoides L.). Plant Cell Tiss Organ Cult 99 (3):259–268. doi:10.1007/s11240-009-9597-8

  • Staba JE (1969) Plant tissue culture as a technique for the phytochemist. Recent Adv Phytochem 2:80

    Google Scholar 

  • Ubeda-Tomas S, Swarup R, Coates J, Swarup K, Laplaze L, Beemster GTS, Hedden P, Bhalerao R, Bennett MJ (2008) Root growth in Arabidopsis requires gibberellin/DELLA signalling in the endodermis. Nat Cell Biol 10(5):625–628. doi:10.1038/ncb1726

    Article  CAS  PubMed  Google Scholar 

  • Ubeda-Tomas S, Federici F, Casimiro I, Beemster GT, Bhalerao R, Swarup R, Doerner P, Haseloff J, Bennett MJ (2009) Gibberellin signaling in the endodermis controls Arabidopsis root meristem size. Curr Biol 19(14):1194–1199. doi:10.1016/j.cub.2009.06.023

    Article  CAS  PubMed  Google Scholar 

  • van den Berg C, Willemsen V, Hage W, Weisbeek P, Scheres B (1995) Cell fate in the Arabidopsis root meristem determined by directional signalling. Nature 378(6552):62–65

    Article  PubMed  Google Scholar 

  • Van den Berg C, Willemsen V, Hendriks G, Weisbeek P, Scheres B (1997) Short-range control of cell differentiation in the Arabidopsis root meristem. Nature 390(6657):287–289

    Article  PubMed  Google Scholar 

  • Vance CP, Uhde-Stone C, Allan DL (2003) Phosphorus acquisition and use: critical adaptations by plants for securing a nonrenewable resource. New Phytol 157(3):423–447

    Article  CAS  Google Scholar 

  • Vinocur B, Carmi T, Altman A, Ziv M (2000) Enhanced bud regeneration in aspen (Populus tremula L.) roots cultured in liquid media. Plant Cell Rep 19(12):1146–1154. doi:10.1007/s002990000243

    Article  CAS  Google Scholar 

  • Wan X, Landhäusser SM, Lieffers VJ, Zwiazek JJ (2006) Signals controlling root suckering and adventitious shoot formation in aspen (Populus tremuloides). Tree Physiol 26(5):681–687. doi:10.1093/treephys/26.5.681

    Article  PubMed  Google Scholar 

  • Zhou K, Yamagishi M, Osaki M, Masuda K (2008) Sugar signalling mediates cluster root formation and phosphorus starvation-induced gene expression in white lupin. J Exp Bot 59(10):2749–2756. doi:10.1093/jxb/ern130

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Zhu W-Z, Wang S-G, Yu D-Z, Jiang Y, Li M-H (2014) Elevational patterns of endogenous hormones and their relation to resprouting ability of Quercus aquifolioides plants on the eastern edge of the Tibetan Plateau. Trees 28(2):359–372

    Article  CAS  Google Scholar 

Download references

Acknowledgments

A PhD scholarship to SRUS from the Higher Education Commission, Pakistan through Lasbela University of Agriculture Water and Marine Sciences, Uthal, Pakistan and a postdoctoral scholarship to TP from the Swedish Institute are gratefully acknowledged. Funding from Stiftelsen Oscar och Lili Lamms Minne and Formas, the Swedish Research Council for Environment, Agricultural Sciences and Spatial Planning to P-OL is gratefully acknowledged. We thank Galina Timermane for supplying seeds of cv. Sunny and cv. Gold Rain, and Guo Hai for seeds of H. r. ssp sinensis. We thank Natalia Demidova, Northern Research Institute of Forestry, Russia, and Kimmo Rumpunen, Swedish University of Agricultural Sciences, Sweden, for providing information regarding cvs. BHi10726 and BHi32415.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Per-Olof Lundquist.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Communicated by K. Masaka.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shah, S.R.U., Plaksina, T., Sriskandarajah, S. et al. Shoot organogenesis from roots of seabuckthorn (Hippophaë rhamnoides L.): structure, initiation and effects of phosphorus and auxin. Trees 29, 1989–2001 (2015). https://doi.org/10.1007/s00468-015-1278-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00468-015-1278-0

Keywords

Navigation