Skip to main content
Log in

Arabidopsis thaliana in vitro shoot regeneration is impaired by silencing of TIR1

  • Published:
Biologia Plantarum

Abstract

Arabidopsis shoots regenerate from root explants through a two-step process consisting of pre-incubation on an auxin-rich callus induction medium (CIM), followed by transfer to a cytokinin-rich shoot induction medium (SIM). The auxin receptor gene TIR1 was up-regulated when explants were transferred to SIM. The CIM pre-incubation is required for its up-regulation. The tir1-1, TIR1 knockdown mutant, reduced the efficiency of shoot regeneration in tissue culture, while its over-expression mutant significantly improved efficiency. TIR1 promoter::GUS fusion analysis demonstrated that TIR1 expression was in the shoot and the newly emerging leaves. After 10 d on SIM, several cytokinin related genes (CDKB1;1, CKS1, IPT4 and ARR15), which associate with shoot regeneration, were up-regulated in plants over-expressing TIR1 and some of these were down-regulated in the tir1-1 mutant. Thus, TIR1 appears to be involved in regulating shoot regeneration.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

2,4-D:

2,4-dichlorophenoxyacetic acid

GUS:

β-glucuronidase

IAA:

indole-3-acetic acid

2-IP:

2-iso-pentenyladenine

MES:

methylester sulfonate

X-Gluc:

5-bromo-4-chloro-3-indolyl-β-D-glucuronide

Reference

  • Atta, R., Laurens, L., Boucheron-Dubuisson, E., Guivarc’h, A., Carnero, E., Giraudat-Pautot, V., Rech, P., Chriqui, D.: Pluripotency of Arabidopsis xylem pericycle underlies shoot regeneration from root and hypocotyl explants grown in vitro. — Plant J. 57: 626–644, 2009.

    Article  PubMed  CAS  Google Scholar 

  • Bantawa, P., Saha-Roy, O., Kumar Ghosh, S., Kumar Mondal, T.: In vitro regeneration of an endangered medical plant Picrorhiza scrophulariiflora. — Biol. Plant. 55: 169–172, 2011.

    Article  CAS  Google Scholar 

  • Buechel, S., Leibfried, A., To, J.P., Zhao, Z., Andersen, S.U., Kieber, J.J., Lohmann, J.U.: Role of A-type ARABIDOPSIS RESPONSE REGULATORS in meristem maintenance and regeneration. — Eur. J. Cell Biol. 89: 279–284, 2010.

    Article  PubMed  CAS  Google Scholar 

  • Cary, A., Uttamchandani, S.J., Smets, R., Van Onckelen, H.A., Howell, S.H.: Arabidopsis mutants with increased organ regeneration in tissue culture are more competent to respond to hormonal signals. — Planta. 213: 700–707, 2001.

    Article  PubMed  CAS  Google Scholar 

  • Che, P., Gingerich, D.J., Lall, S., Howell, S.H.: Global and hormone-induced gene expression changes during shoot development in Arabidopsis. — Plant Cell 14: 2771–2785, 2002.

    Article  PubMed  CAS  Google Scholar 

  • Che, P., Lall, S., Nettleton, D., Howell, S.H.: Gene expression programs during shoot, root, and callus development in Arabidopsis tissue culture. — Plant Physiol. 141: 620–637, 2006.

    Article  PubMed  CAS  Google Scholar 

  • Che, P., Lall, S., Howell, S.H.: Developmental steps in acquiring competence for shoot development in Arabidopsis tissue culture. — Planta 226: 1183–1194, 2007.

    Article  PubMed  CAS  Google Scholar 

  • Dharmasiri, N., Dharmasiri, S., Estelle, M.: The F-box protein TIR1 is an auxin receptor. — Nature. 435: 441–445, 2005a.

    Article  PubMed  CAS  Google Scholar 

  • Dharmasiri, N., Dharmasiri S., Weijers, D., Lechner, E., Yamada, M., Hobbie, L., Ehrismann, J.S., Jürgens, G., Estelle, M.: Plant development is regulated by a family of auxin receptor F box proteins. — Dev. Cell 9: 109–119, 2005b.

    Article  PubMed  CAS  Google Scholar 

  • Dubrovsky, J.G., Sauer, M., Napsucialy-Mendivil, S., Ivanchenko, M.G., Friml, J., Shishkova, S., Celenza, J., Benkova, E.: Auxin acts as a local morphogenetic trigger to specify lateral root founder cells. — Proc. nat. Acad. Sci. USA 105: 8790–8794, 2008.

    Article  PubMed  CAS  Google Scholar 

  • Gamborg, O.J., Miller, R.A., Ojima, K.: Nutrient requirement of suspension cultures of soybean root cells. — Exp. cell. Res. 50: 151–158, 1968.

    Article  PubMed  CAS  Google Scholar 

  • Gordon, S.P., Heisler, M.G., Reddy, G.V., Ohno, C., Das, P., Meyerowitz, E.M.: Pattern formation during de novo assembly of the Arabidopsis shoot meristem. — Development 134: 3539–3548, 2007.

    Article  PubMed  CAS  Google Scholar 

  • Hwang, I., Sheen, J.: Two-component circuitry in Arabidopsis cytokinin signal transduction. — Nature 413: 383–389, 2001.

    Article  PubMed  CAS  Google Scholar 

  • Jasinski, S., Piazza, P., Craft, J., Hay, A., Woolley, L., Rieu, I., Phillips, A., Hedden, P., Tsiantis, M.: KNOX action in Arabidopsis is mediated by coordinate regulation of cytokinin and gibberellin activities. — Curr. Biol. 15: 1560–1565, 2005.

    Article  PubMed  CAS  Google Scholar 

  • Joubès, J., Chevalier, C., Dudits, D., Heberle-Bors, E., Inzé, D., Umeda, M., Renaudin, J.P.: CDK-related protein kinases in plants. — Plant mol. Biol. 43: 607–620, 2000.

    Article  PubMed  Google Scholar 

  • Kakimoto, T.: CKI1, a histidine kinase homolog implicated in cytokinin signal transduction. — Science 274: 982–985, 1996.

    Article  PubMed  CAS  Google Scholar 

  • Murashige, T., Skoog, F.: A revised medium for rapid growth and bioassays with tobacco tissue culture. — Physiol. Plant. 15: 473–497, 1962.

    Article  CAS  Google Scholar 

  • Ozawa, S., Yasutani, I., Fukuda, H., Komamine, A., Sugiyama, M.: Organogenic response in tissue culture of srd mutants of Arabidopsis thaliana. — Development 125: 135–142, 1998.

    PubMed  CAS  Google Scholar 

  • Pernisová M, Klíma P, Horák J, Válková M, Malbeck J, Soucek P, Reichman P, Hoyerová K, Dubová J, Friml J, Zazímalová E, Hejátko J.: Cytokinins modulate auxin induced organogenesis in plants via regulation of the auxin efflux. — Proc. nat. Acad. Sci. USA. 106: 3609–3614, 2009.

    Article  PubMed  Google Scholar 

  • Quint, M., Gray, W.M.: Auxin signaling. — Curr. Opin. Plant. Biol. 9: 448–453, 2006.

    Article  PubMed  CAS  Google Scholar 

  • Ruegger, M., Dewey, E., Gray, W.M., Hobbie, L., Turner, J., Estelle, M.: The TIR1 protein of Arabidopsis functions in auxin response and is related to human SKP2 and yeast grr1p. — Genes Dev. 12: 198–207, 1998.

    Article  PubMed  CAS  Google Scholar 

  • Seo, P.J., Xiang, F., Qiao, M., Park, J.Y., Lee, Y.N., Kim, S.G., Lee, Y.H., Park, W.J., Park, C.M.: The MYB96 transcription factor mediates abscisic acid signaling during drought stress response in Arabidopsis. — Plant Physiol. 151: 275–289, 2009.

    Article  PubMed  CAS  Google Scholar 

  • Skoog, F., Miller, C.O.: Chemical regulation of growth and organ formation in plant tissues cultured in vitro. — Symp. Soc. exp. Biol. 11: 118–130, 1957.

    PubMed  CAS  Google Scholar 

  • Stone, S.L., Kwong, L.W., Yee, K.M., Pelletier, J., Lepiniec, L., Fischer, R.L., Goldberg, R.B., Harada, J.J.: LEAFY COTYLEDON2 encodes a B3 domain transcription factor that induces embryo development. — Proc. nat. Acad. Sci. USA 98: 11806–11811, 2001.

    Article  PubMed  CAS  Google Scholar 

  • Su, Y.H., Zhao, X.Y., Liu, Y.B., Zhang, C.L., O’Neill, S.D., Zhang, X.S.: Auxin-induced WUS expression is essential for embryonic stem cell renewal during somatic embryogenesis in Arabidopsis. — Plant J. 59: 448–460, 2009.

    Article  PubMed  CAS  Google Scholar 

  • Sugimoto, K., Jiao, Y., Meyerowitz, E.M.: Arabidopsis regeneration from multiple tissues occurs via a root development pathway. — Dev. Cell. 16: 463–471, 2010.

    Article  Google Scholar 

  • Sun, J., Niu, Q.W., Tarkowski, P., Zheng, B., Tarkowska, D., Sandberg, G., Chua, N.H., Zuo, J.: The Arabidopsis AtIPT8/PGA22 gene encodes an isopentenyl transferase that is involved in de novo cytokinin biosynthesis. — Plant Physiol. 131: 167–176, 2003.

    Article  PubMed  CAS  Google Scholar 

  • Tang, G.X., Knecht, K., Yang, X.F., Qin, Y.B., W. -J. Zhou, W.J., Cai, D.: A two-step protocol for shoot regeneration from hypocotyl explants of oilseed rape and its application for Agrobacterium-mediated transformation. — Biol. Plant. 54: 126–130, 2010.

    Article  Google Scholar 

  • Valvekens, D., Van Montagu, M., Lijsebettens, M.V.: Agrobacterium tumefaciens-mediated transformation of Arabidopsis thaliana root explants by using kanamycin selection. — Proc. nat. Acad. Sci. USA 85: 5536–5540, 1988.

    Article  PubMed  CAS  Google Scholar 

  • Xue, Y., Peng, R., Xiong, A., Li, X., D. Zha, D., YAO, Q.: Over-expression of heat shock protein gene hsp26 in Arabidopsis thaliana enhances heat tolerance. — Biol. Plant: 55: 169–172, 2011.

    Article  Google Scholar 

  • Yamaguchi, M., Kato, H., Yoshida, S., Yamamura, S., Uchimiya, H., Umeda, M.: Control of in vitro organogenesis by cyclin-dependent kinase activities in plants. — Proc. nat. Acad. Sci. USA 100: 8019–8023, 2003.

    Article  PubMed  CAS  Google Scholar 

  • Yanai, O., Shani, E., Dolezal, K., Tarkowski, P., Sablowski, R., Sandberg, G., Samach, A., Ori, N.: Arabidopsis KNOXI proteins activate cytokinin biosynthesis. — Curr. Biol. 15: 1566–1571, 2005.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to F. -N. Xiang.

Additional information

Acknowledgements: This research was supported by the Chinese National Special Science Research Program (grant No. 2007CB948203), Natural Education Ministry Doctor Station Foundation Fellowship (grant No. 913111006), National Natural Science Foundation (grant Nos. 30970243 and 30771116), Science & Technology Plan of Shandong Province (grant No. 2009GG10002001) and Shandong Province Excellent Youth Foundation (grant No. JQ200810). We thank R. Koebner (UK) and E.C. Mignot (USA) for English editing of the manuscript.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Qiao, M., Zhao, Z.J. & Xiang, F.N. Arabidopsis thaliana in vitro shoot regeneration is impaired by silencing of TIR1 . Biol Plant 56, 409–414 (2012). https://doi.org/10.1007/s10535-011-0233-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10535-011-0233-1

Additional key words

Navigation