Skip to main content
Log in

Characterization of time-varying macroscopic electro-chemo-mechanical behavior of SOFC subjected to Ni-sintering in cermet microstructures

  • Original Paper
  • Published:
Computational Mechanics Aims and scope Submit manuscript

Abstract

In order to perform stress analyses of a solid oxide fuel cell (SOFC) under operation, we propose a characterization method of its time-varying macroscopic electro-chemo-mechanical behavior of electrodes by considering the time-varying geometries of anode microstructures due to Ni-sintering. The phase-field method is employed to simulate the micro-scale morphology change with time, from which the time-variation of the amount of triple-phase boundaries is directly predicted. Then, to evaluate the time-variation of the macroscopic oxygen ionic and electronic conductivities and the inelastic properties of the anode electrode, numerical material tests based on the homogenization method are conducted for each state of sintered microstructures. In these homogenization analyses, we also have to consider the dependencies of the properties of constituent materials on the temperature and/or the oxygen potential that is supposed to change within an operation period. To predict the oxygen potential distribution in an overall SOFC structure under long-period operation, which determines reduction-induced expansive/contractive deformation of oxide materials, an unsteady problem of macroscopic oxygen ionic and electronic conductions is solved. Using the calculated stress-free strains and the homogenized mechanical properties, both of which depend on the operational environment, we carry out the macroscopic stress analysis of the SOFC.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25
Fig. 26
Fig. 27
Fig. 28
Fig. 29
Fig. 30

Similar content being viewed by others

References

  1. Huang K, Goodenough J (2009) Solid oxide fuel cell technology: principles, performance and operations. Woodhead Publishing, Cambridge

    Book  Google Scholar 

  2. Haile S (2003) Fuel cell materials and components. Acta Mater 51:5981

    Article  Google Scholar 

  3. Haering C, Roosen A, Schichl H (2005) Degradation of the electrical conductivity in stabilised zirconia systems Part I: yttria-stabilised zirconia. Solid State Ion 176:253

    Article  Google Scholar 

  4. Haering C, Roosen A, Schichl H, Schnfller M (2005) Degradation of the electrical conductivity in stabilised zirconia systems Part II: scandia-stabilised zirconia. Solid State Ion 176:261

    Article  Google Scholar 

  5. Marina O, Canfield N, Stevenson J (2002) Thermal, electrical, and electrocatalytical properties of lanthanum-doped strontium titanate. Solid State Ion 149:21

    Article  Google Scholar 

  6. Tai LW, Nasrallah M, Anderson H, Sparlin D, Sehlin S (1995) Structure and electrical properties of La1-xSrxCo1-yFeyO3. II: the system La1-xSrxFe0. Solid State Ion 76:273

    Article  Google Scholar 

  7. Ullmann H, Trofimenko N, Tietz F, Stover D (2000) Correlation between thermal expansion and oxide ion transport in mixed conducting perovskite-type oxides for SOFC cathodes. Solid State Ion 138:79

    Article  Google Scholar 

  8. Atkinson A, Ramos T (2000) Chemically-induced stresses in ceramic oxygen ion-conducting membranes. Solid State Ion 129:259

    Article  Google Scholar 

  9. Terada K, Kawada T, Sato K, Iguchi F, Yashiro K, Amezawa K, Kubo M, Yugami H, Hashida T, Mizusaki J, Watanabe H, Sasagawa T, Aoyagi H (2011) Multiscale simulation of electro-chemo-mechanical coupling behavior of PEN Structure under SOFC operation. ECS Trans 35:923

    Article  Google Scholar 

  10. Nayar A (1997) The metal databook. McGraw-Hill, New York

    Google Scholar 

  11. O’Hayre R, Cha SW, Colella W, Prinz F (2009) Fuel cell fundamentals. Wiley, New York

    Google Scholar 

  12. Kawada T, Yokokawa H (1990) Characteristics of slurry-coated nickel zirconia cermet anodes for solid oxide fuel cells. J Electrochem Soc 137:3042

    Article  Google Scholar 

  13. Grew K, Chiu W (2012) A review of modeling and simulation techniques across the length scales for the solid oxide fuel cell. J Power Sources 199:1

    Article  Google Scholar 

  14. Khaleel M, Lina Z, Singh P, Surdoval W, Collin D (2004) A finite element analysis modeling tool for solid oxide fuel cell development: coupled electrochemistry, thermal and flow analysis in MARC. J Power Sources 130:136

    Article  Google Scholar 

  15. Lin CK, Chen TT, Chyou YP, Chiang LK (2007) Thermal stress analysis of a planar SOFC stack. J Power Sources 164:238

    Article  Google Scholar 

  16. Lin CK, Huang LH, Chiang LK, Chyou YP (2009) Thermal stress analysis of planar solid oxide fuel cell stacks: effects of sealing design. J Power Sources 192:515

    Article  Google Scholar 

  17. Nakajo A, Wuillemin Z, herle JV, Favrat D (2009) Simulation of thermal stresses in anode-supported solid oxide fuel cell stacks. Part I: probability of failure of the cells. J Power Sources 193:203

    Article  Google Scholar 

  18. Ferguson J, Fiard J, Herbin R (1996) Three-dimensional numerical simulation for various geometries of solid oxide fuel cells. J Power Sources 58:109

    Article  Google Scholar 

  19. Hall D, Colclaser R (1999) Transient modeling and simulation of a tubular solid oxide fuel cell. IEEE Trans Energy Convers 14:749

    Article  Google Scholar 

  20. Yakabe H, Ogiwara T, Hishinuma M, Yasuda I (2001) 3D model calculation for planer SOFC. J Power Sources 102:144

    Article  Google Scholar 

  21. Atkinson A (1997) Chemically-induced stresses in gadolinium-doped ceria solid oxide fuel cell electrolytes. Solid State Ion 95:249

    Article  Google Scholar 

  22. Atkinson A, Sun B (2007) Residual stress and thermal cycling of planar solid oxide fuel cells. Solid State Ion 23:1135

    Google Scholar 

  23. Liu L, Kim GY, Chandra A (2010) Modeling of thermal stresses and lifetime prediction of planar solid oxide fuel cell under thermal cycling conditions. J Power Sources 195:2310

    Article  Google Scholar 

  24. Chen HY, Yua HC, Cronin J, Wilson J, Barnett S, Thornton K (2011) Simulation of coarsening in three-phase solid oxide fuel cell anodes. J Power Sources 196:1333

    Article  Google Scholar 

  25. Jiao Z, Shikazono N (2013) Simulation of solid oxide fuel cell anode microstructure evolution using phase field method. J Electrochem Soc 160:F709

    Article  Google Scholar 

  26. Li Q, Liang L, Gerdes K, Chen LQ (2012) Phase-field modeling of three-phase electrode microstructures in solid oxide fuel cells. Appl Phys Lett 101:033909

    Article  Google Scholar 

  27. Liu L, Gao F, Hu G, Liu J (2012) Phase field simulation for the evolution of textured ceramics microstructure. Ceram Int 38:5425

    Article  Google Scholar 

  28. Moshtaghioun B, Garcia D, Hernandez F, Rodriguez A (2014) A phase-field model of 2D grain size distribution in ceramics. J Eur Ceram Soc 34:2731

    Article  Google Scholar 

  29. Zhang Y, Xia C, Ni M (2012) Simulation of sintering kinetics and microstructure evolution of composite solid oxide fuel cells electrodes. Int J Hydrog Energy 37:3392

    Article  Google Scholar 

  30. Chan S, Khor K, Xia Z (2001) A complete polarization model of a solid oxide fuel cell and its sensitivity to the change of cell component thickness. J Power Sources 93:130

    Article  Google Scholar 

  31. Sanchez-Palencia E (1980) Non-homogeneous media and vibration theory. No. 127 in Lecture Notes in physics. Springer, Berlin

  32. Suquet P (1987) In: Sanchez-Palencia E, Zaoui A (eds.) Homogenization techniques for composite media. Lecture Note on physics, vol 272. Springer, pp 193–278

  33. Terada K, Kurumatani M, Ushida T, Kikuchi N (2010) A method of two-scale thermo-mechanical analysis for porous solids with micro-scale heat transfer. Comput Mech 146:269

    Article  MathSciNet  Google Scholar 

  34. Terada K, Kato J, Hirayama N, Inugai T, Yamamoto K (2013) A method of two-scale analysis with micro-macro decoupling scheme: application to hyperelastic composite materials. Comput Mech 52(5):1199

    Article  MATH  MathSciNet  Google Scholar 

  35. Terada K, Hirayama N, Yamamoto K, Kato J, Kyoya T, Matsubara S, Arakawa Y, Ueno Y, Miyanaga N (2014) Applicability of micro-macro decoupling scheme to two-scale analysis of fiber-reinforced plastics. Adv Compos Mater 23(5–6):421

    Article  Google Scholar 

  36. Asp K, Agren J (2006) Phase-field simulation of sintering and related phenomena—a vacancy diffusion approach. Acta Mater 54:1241

    Article  Google Scholar 

  37. Wang Y (2006) Computer modeling and simulation of solid-state sintering: a phase field approach. Acta Mater 54:953

    Article  Google Scholar 

  38. Yasuda I, Hikita T (1993) Electrical conductivity and defect structure of calcium-doped lanthanum chromites. J Electrochem Soc 140(6):1699

    Article  Google Scholar 

  39. Fukuda Y, Hashimoto S, Sato K, Yashiro K, Mizusaki J (2009) High temperature defect equilibrium, solid state properties and crystal structure of La0.6Sr0.4Co1-yFeyO3-\(\delta (y=0.2, 0.4, 0.6, 0.8)\) for cathode of solid oxide fuel cells. ECS Trans 25:2375

    Article  Google Scholar 

  40. Park J, Blumenthal R (1989) Electronic transport in 8 mole percent Y2O3-ZrO2. J Electrochem Soc 136:2867

    Article  Google Scholar 

  41. Yasuda I, Hishinuma M (1996) Electrochemical properties of doped lanthanum chromites as interconnectors for solid oxide fuel cells. J Electrochem Soc 143(5):1583

    Article  Google Scholar 

  42. Sasagawa T, Takahashi K, Terada K, Kawada T (2012) Estimation of macroscopic material properties using sintering simulation of porous microstructure affected by mechanical effects (In Japanese). Trans JSCES 2012:2012004

    Google Scholar 

  43. Emmerich H (2009) The diffuse interface approach in materials science. Springer, Berlin

    Google Scholar 

  44. Provatas N, Elder K (2010) Phase-field methods in materials science and engineering. Wiley-VCH, Weinheim

    Book  Google Scholar 

  45. Koyama M, Ogiya K, Hattori T, Fukunaga H, Suzuki A, Sahnoun R, Tsuboi H, Hatakeyama N, Endou A, Takaba H, Kubo M, Carpio CD, Miyamoto A (2008) Development of three-dimensional porous structure simulator POCO2 for simulations of irregular porous materials. J Comput Chem Jpn 7:55

  46. Baniassadi M, Garmestani H, Li D, Ahzi S, Khaleel M, Sun X (2011) Three-phase solid oxide fuel cell anode microstructure realization using two-point correlation functions. Acta Mater 59:30

    Article  Google Scholar 

  47. Wilson J, Duong A, Gameiro M, Chen KTH-Y, Mumm D, Barnett S (2009) Quantitative three-dimensional microstructure of a solid oxide fuel cell cathode. Electrochem Commun 11:1052

  48. Yu J, Park G, Lee S, Woo S (2007) Microstructural effects on the electrical and mechanical properties of Ni-YSZ cermet for SOFC anode. J Power Sources 163:926

  49. Tietz F (1999) Thermal expansion of SOFC materials. Ionics 5:129

    Article  Google Scholar 

  50. Tai LW, Nasrallah M, Anderson H, Sparlin D, Sehlin S (1995) Structure and electrical properties of La1-xSrxCo1-yFeyO3. I: the system La0. 8Sr0. 2Co1-yFeyO3. Solid State Ion 76:259

  51. Fergus J (2004) Lanthanum chromite-based materials for solid oxide fuel cell interconnects. Ionics 171:1

  52. Yasuda I, Hishinuma M (2000) Lattice expansion of acceptor-doped lanthanum chromites under high-temperature reducing atmospheres (in Japanese). Electrochem 68:526

  53. Steinbach I, Pezzolla F, Nestler B, Sedklberg M, Ptieler R, Rezende J (1996) A phase field concept for multiphase systems. Phys D 94:135

    Article  MATH  Google Scholar 

Download references

Acknowledgments

This work was carried out as a part of the research project “Technology development for SOFC commercialization promotion. Basic study on rapid evaluation method of SOFC durability”, which was supported by the New Energy and Industrial Technology Development Organization (NEDO), Japan.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Muramatsu.

Appendices

Appendix 1

Usual Ginzburg–Landau type energy can be calculated as follows:

$$\begin{aligned} F = \int _V \left[ g(\rho )+\frac{\alpha }{2} ||\nabla \rho ||^2 \right] \mathrm{d}V \end{aligned}$$
(71)

The variation of Eq. (71) is calculated as the following [53].

(72)
(73)
(74)
(75)
(76)

Substituting

$$\begin{aligned} g= & {} \displaystyle {\sum _i} A_i\phi _i^2(1-\phi _i)^2 + \displaystyle {\sum _i} B_i\phi _i^2 \nonumber \\&+ \displaystyle {\sum _i}\left( \displaystyle {\sum _i}\frac{\beta _{ij}}{4}\phi _i^2\phi _j^2 \right) + \frac{\gamma }{2}\phi _1^2\phi _2^2\phi _3^2 \end{aligned}$$
(77)

into Eq. (76), the following equation is derived.

$$\begin{aligned} \frac{\delta F}{\delta \phi _i}= & {} A_i\left( 2\phi _i - 6\phi _i^2 + 44\phi _i^3 \right) \nonumber \\&+\, 2B_i\phi _i + \beta _{ij}\phi _j^2\phi _i + \gamma \phi _j^2\phi _k^2\phi _i - \alpha _i\nabla ^2\phi _i \end{aligned}$$
(78)

Appendix 2

Phase-field model simulation is carried out based on finite differential method. The microstructures of anode is made by voxel mesh, and the grids correspond to the voxels. Discretizing

$$\begin{aligned}&\left( \frac{\delta F}{\delta \phi _i} \right) ^{l,m,n} = A_i \left( 2\phi _i^{l,m,n}-6\left( \phi _i^{l,m,n} \right) ^2 + 4\left( \phi _i^{l,m,n} \right) ^3 \right) \nonumber \\&\quad + 2B_i\phi _j^{l,m,n} + \beta _{ij}\left( \phi _j^{l,m,n} \right) ^2\left( \phi _k^{l,m,n} \right) ^2\phi _i -\alpha _i\nabla ^2\phi _i^{l,m,n} \nonumber \\&\quad -\alpha _i \left( \frac{\phi _i^{l+1,m,n} \,{+}\, \phi _i^{l-1,m,n} \,{+}\, \phi _i^{l,m+1,n}\,{+}\,\phi _i^{l,m-1,n} \,{+}\, \phi _i^{l,m,n+1}\,{+}\,\phi _i^{l,m,n-1}}{\left( \Delta x \right) ^2 } \right) \nonumber \\ \end{aligned}$$
(79)
$$\begin{aligned}&\left( \frac{\partial \phi _i}{\partial t} \right) ^{l,m,n} \,{=}\, M_i^{l,m,n} \left[ \frac{D^{l,m,n}}{\left( \nabla x \right) ^2} \left\{ \left( \frac{\delta F}{\delta \phi _i} \right) ^{l-1,m,n} {+}\left( \frac{\delta F}{\delta \phi _i} \right) ^{l+1,m,n} {+}\left( \frac{\delta F}{\delta \phi _i} \right) ^{l,m-1,n} \right. \right. \nonumber \\&\quad \left. +\,\left( \frac{\delta F}{\delta \phi _i} \right) ^{l,m+1,n} +\left( \frac{\delta F}{\delta \phi _i} \right) ^{l,m,n-1} +\left( \frac{\delta F}{\delta \phi _i} \right) ^{l,m,n+1} -6\left( \frac{\delta F}{\delta \phi _i} \right) ^{l,m,n} \right\} \nonumber \\&\quad +\,\frac{1}{4\Delta x} \left\{ \left( \left( \frac{\delta F}{\delta \phi _i} \right) ^{l+1,m,n} -\left( \frac{\delta F}{\delta \phi _i} \right) ^{l-1,m,n} \right) \left( D^{l+1,m,n} - D^{l-1,m,n} \right) \right. \nonumber \\&\quad + \left( \left( \frac{\delta F}{\delta \phi _i} \right) ^{l,m+1,n} - \left( \frac{\delta F}{\delta \phi _i} \right) ^{l,m-1,n} \right) \left( D^{l,m+1,n} - D^{l,m-1,n} \right) \nonumber \\&\quad \left. \left. +\, \left( \left( \frac{\delta F}{\delta \phi _i} \right) ^{l,m,n+1} + \left( \frac{\delta F}{\delta \phi _i} \right) ^{l,m,n-1} \right) \left( D^{l,m,n+1} - D^{l,m,n-1} \right) \right\} \right] \nonumber \\ \end{aligned}$$
(80)

Discritizing the time with forward differential method, the phase-field simulation is conducted with (79).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Muramatsu, M., Terada, K., Kawada, T. et al. Characterization of time-varying macroscopic electro-chemo-mechanical behavior of SOFC subjected to Ni-sintering in cermet microstructures. Comput Mech 56, 653–676 (2015). https://doi.org/10.1007/s00466-015-1193-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00466-015-1193-7

Keywords

Navigation