Skip to main content
Log in

Controllable biosynthesis of high-purity lead-sulfide (PbS) nanocrystals by regulating the concentration of polyethylene glycol in microbial system

  • Original Paper
  • Published:
Bioprocess and Biosystems Engineering Aims and scope Submit manuscript

Abstract

We demonstrated a simple biological method to explore the controllable synthesize of high-purity PbS nanocrystals by regulating the concentration of polyethylene glycol in microbial system. The biogenic H2S produced via the reduction of sulfate precipitated Pb2+ ions as sulfide extracellularly, and the optimal removal rate of Pb2+ ions is up to 96.7 % in 2 weeks. The characterization results showed that PbS nanocuboids with a particle size 50 × 50 × 100 nm obtained from Case A with 4 mM polyethylene glycol as a dispersant, and can completely degrade methylene blue from solution within 20 h; PbS nanosheets with a thickness size ca. 10 nm attained from Case B with 12 mM polyethylene glycol, and it can degrade 61.6 % dye within 24 h; PbS nanoparticles with a uniform diameter of ca. 60 nm formed from Case C with 20 mM polyethylene glycol, only degrade 14.1 % dye within 24 h. It is interesting that the factor affecting their catalytic activities is not the specific surface area, but the number of [200] crystal plane. This work not only displayed a simple synthetic method to control the morphology of PbS nanocrystals in microbial system, but also provided an economic and environmentally friendly approach for resourceful treatment and efficient bioremediation of wastewater-containing heavy metal.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Han S, Hu L, Gao N, Al-Ghamdi AA, Fang X (2014) Efficient self-assembly synthesis of uniform CdS spherical nanoparticles-au nanoparticles hybrids with enhanced photoactivity. Adv Funct Mater 24:3725–3733

    Article  CAS  Google Scholar 

  2. Lo W, Chua H, Lam KH, Bi SH (1999) A comparative investigation on the biosorption of lead by filamentous fungal biomass. Chemosphere 39:2723–2736

    Article  CAS  Google Scholar 

  3. Lee SM, Laldawngliana C, Tiwari D (2012) Iron oxide nano-particles-immobilized-sand material in the treatment of Cu(II), Cd(II) and Pb(II) contaminated waste waters. Chem Eng J 195–196:103–111

    Article  Google Scholar 

  4. Kim SA, Kannan SK, Lee KJ, Park YJ, Shea PJ, Lee WH, Kim HM, Oh BT (2013) Removal of Pb(II) from aqueous solution by a zeolite-nanoscale zero-valent iron composite. Chem Eng J 217:54–60

    Article  CAS  Google Scholar 

  5. Xiao X, Ma XB, Yuan H, Liu PC, Lei YB, Xu H, Du DL, Du JF, Sun JF, Feng YJ (2015) Photocatalytic properties of zinc sulfide nanocrystals biofabricated by metal-reducing bacterium Shewanella oneidensis MR-1. J Hazard Mater 288:134–139

    Article  CAS  Google Scholar 

  6. Lai CH, Lu MY, Chen LJ (2012) Metal sulfide nanostructures: synthesis, properties and applications in energy conversion and storage. J Mater Chem 22:19–30

    Article  CAS  Google Scholar 

  7. Pandey G, Sharma HK, Srivastava SK, Kotnala RK (2011) γ-MnS nano and micro architectures: synthesis, characterization and optical properties. Mater Res Bull 46:1804–1810

    Article  CAS  Google Scholar 

  8. Zhang WL, Chen SY, Zhao SY, Zheng Y, Wang HP (2014) Zinc sulfide nanoparticles template by bacterial cellulose and their optical properties. J Appl Polym Sci 131:40874–40882

    Google Scholar 

  9. Gao N, Fang X (2015) Synthesis and development of graphene-inorganic semiconductor nanocomposites. Chem Rev 115:8294–8343

    Article  CAS  Google Scholar 

  10. Liu C, Xu J, Wu Z (2011) Direct electron transfer and electrochemical study of hemoglobin immobilized in ZnO hollow spheres. Bioprocess Biosyst Eng 34:931–938

    Article  CAS  Google Scholar 

  11. Zhang K, Guo L (2013) Metal sulphide semiconductors for photocatalytic hydrogen production. Catal Sci Technol 3:1672–1690

    Article  CAS  Google Scholar 

  12. McDonald SA, Konstantatos G, Zhang S, Cyr PW, Klem JDE, Levina L, Sargent EH (2005) Solution-processed PbS quantum dot infrared photodetectors and photovoltaics. Nat Mater 4:138–142

    Article  CAS  Google Scholar 

  13. Koao LF, Dejene FB, Swart HC (2014) Synthesis of PbS nanostructures by chemical bath deposition method. Int J Electrochem Sci 9:1747–1757

    Google Scholar 

  14. Kumar D, Agarwal G, Tripathi B, Vyas D, Kulshrestha V (2009) Characterization of PbS nanoparticles synthesized by chemical bath deposition. J Alloys Comp 484:463–466

    Article  CAS  Google Scholar 

  15. Zhou SM, Zhang XH, Meng XM, Fan X, Lee ST, Wu SK (2005) Sonochemical synthesis of mass single-crystal PbS nanobelts. J Solid State Chem 178:399–403

    Article  CAS  Google Scholar 

  16. Saraidarov T, Gevorgian A, Reisfeld R, Sashchiuk A, Bashouti M, Lifshitz E (2007) Synthesis, structural and electrical characterization of PbS NCs in titania sol–gel films. J Sol–Gel Sci Technol 44:87–95

    Article  CAS  Google Scholar 

  17. Ahmad A, Mukherjee P, Mandal D, Senapati S, Khan MI, Kumar R, Sastry M (2002) Enzyme mediated extracellular synthesis of CdS nanoparticles by the fungus, Fusarium oxysporum. J Am Chem Soc 124:12108–12109

    Article  CAS  Google Scholar 

  18. Hosseini MR, Schaffie M, Pazouki M, Darezereshki E, Ranjbar M (2012) Biologically synthesized copper sulfide nanoparticles: production and characterization. Mat Sci Semicon Proc 15:222–225

    Article  CAS  Google Scholar 

  19. Kowshik M, Vogel W, Urban J, Kulkarni SK, Paknikar KM (2002) Microbial synthesis of semiconductor PbS nanocrystallites. Adv Mater 14:815–818

    Article  CAS  Google Scholar 

  20. Labrenz M, Druschel GK, Ebert TT, Gibert B, Welch SA, Kemner KM, Logan GA, Summons RE, Stasio GD, Bond PL, Lai B, Kelly SD, Banfield JF (2000) Formation of sphalerite (ZnS) deposits in natural biofilms of sulfate-reducing bacteria. Science 290:1744–1747

    Article  CAS  Google Scholar 

  21. Suresh AK, Doktycz MJ, Wang W, Moon JW, Gu BH, Meyer HM, Hensley DK, Allison DP, Phelps TJ, Pelletier DA (2011) Monodispersed biocompatible silver sulfide nanoparticles: facile extracellular biosynthesis using the γ-proteobacterium, Shewanella oneidensis. Acta Biomater 7:4253–4258

    Article  CAS  Google Scholar 

  22. Yue L, Wu Y, Liu X, Xin BP, Chen S (2014) Controllable extracellular biosynthesis of bismuth sulfide nanostructure by sulfate-reducing bacteria in water–oil two-phase system. Biotechnol Prog 30:960–966

    Article  CAS  Google Scholar 

  23. Liu X, Wang J, Yue L, Xin BP, Chen S, Dai JL, Wang RQ, Wang YT (2015) Biosynthesis of high-purity γ-MnS nanoparticle by newly isolated Clostridiaceae sp. and its properties characterization. Bioproc Biosyst Eng 38:219–227

    Article  CAS  Google Scholar 

  24. Seshadri S, Saranya K, Kowshik M (2011) Green synthesis of lead sulfide nanoparticles by the lead resistant marine yeast, Rhodosporidium diobovatum. Biotechnol Prog 27:1464–1469

    Article  CAS  Google Scholar 

  25. Bharde A, Wani A, Shouche Y, Joy YA, Prasad BLV, Sastry M (2005) Bacterial aerobic synthesis of nanocrystalline magnetite. J Am Chem Soc 127:9326–9327

    Article  CAS  Google Scholar 

  26. Ntwaeaborwa OM, Kroon RE, Kumar V, Dubroca T, Ahn J-P, Park J-K, Swart HC (2009) Ex situ synthesis and optical properties of ZnO-PbS nanocomposites. J Phys Chem Solids 70:1438–1442

    Article  CAS  Google Scholar 

  27. Syed A, Ahmad A (2013) Extracellular biosynthesis of CdTe quantum dots by the fungus Fusarium oxysporum and their anti-bacterial activity. Spectrochim Acta A Mol Biomol Spectrosc 106:41–47

    Article  CAS  Google Scholar 

  28. Fang X, Zhai T, Gautam UK, Li L, Wu L, Bando Y, Golberg D (2011) ZnS nanostructures: from synthesis to applications. Prog Mater Sci 56:175–287

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We really appreciate the National Natural Science Foundation of China (21277012) and Shandong Fund of Sciences and Technology for environment Protection and Beijing Jointly Constructed Special Project Fund for providing us the financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Baoping Xin.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 39 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yue, L., Wang, J., Zhang, Y. et al. Controllable biosynthesis of high-purity lead-sulfide (PbS) nanocrystals by regulating the concentration of polyethylene glycol in microbial system. Bioprocess Biosyst Eng 39, 1839–1846 (2016). https://doi.org/10.1007/s00449-016-1658-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00449-016-1658-x

Keywords

Navigation