Skip to main content
Log in

Direct electron transfer and electrochemical study of hemoglobin immobilized in ZnO hollow spheres

  • Original Paper
  • Published:
Bioprocess and Biosystems Engineering Aims and scope Submit manuscript

Abstract

ZnO hollow spheres were firstly prepared. A new type of amperometric hydrogen peroxide biosensor was fabricated by entrapping Hemoglobin (Hb) through the ZnO hollow spheres (ZHS) nanoparticles. The composition morphology and size were studied by transmission electron microscopy. The surface topography of the prepared films was imaged by atomic force microscope (AFM). Several techniques, including UV–vis absorption spectroscopy, cyclic voltammetry, chronoamperometry were employed to characterize the performance of the biosensor. The results indicated that the ZHS nanoparticles had enhanced the performance of the hydrogen peroxide sensors. The electrochemical parameters of Hb in the ZHS were calculated by the results of the electron-transfer coefficient (α) and the apparent heterogeneous electron-transfer rate constant K s as 0.5 and 3.1 s−1, respectively. The resulting biosensors showed a wide linear range from 2.1 × 10−6 to 5.18 × 10−3 M, with a low detection limit of 7.0 × 10−7 M (S/N = 3) under optimized experimental conditions. The results demonstrated that the ZHS matrix may improve the protein loading with the retention of bioactivity and greatly promote the direct electron transfer, which can be attributed to its unique morphology, high specific surface area, and biocompatibility. The biosensor obtained from this study possesses high sensitivity, good reproducibility, and long-term stability.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Armstrong FA (2002) Insights from protein film voltammetry into mechanisms of complex biological electron-transfer reactions. J Chem Soc Dalton Trans 5:661–671

    Article  Google Scholar 

  2. Willner I, Katz E (2000) Integration of layered redox-proteins and conductive supports for bioelectronic applications. Angew Chem Int Ed 39:1180–1218

    Article  Google Scholar 

  3. Hill HAO (1996) The development of bioelectrochemistry. Coord Chem Rev 151:115–123

    CAS  Google Scholar 

  4. Yu JJ, Zhao T, Zhao FQ et al (2008) Direct electron transfer of hemoglobin immobilized in a mesocellular siliceous foams supported room temperature ionic liquid matrix and the electrocatalytic reduction of H2O2. Electrochim Acta 53:5760–5765

    Article  CAS  Google Scholar 

  5. He XY, Zhu L (2006) Direct electrochemistry of hemoglobin in cetylpyridinium bromide film: redox thermodynamics and electrocatalysis to nitric oxide. Electrochem Commun 8:615–620

    Article  CAS  Google Scholar 

  6. Lu Q, Zhou T, Hu SS (2007) Direct electrochemistry of hemoglobin in PHEA and its catalysis to H2O2. Biosens Bioelectron 22:899–904

    Article  CAS  Google Scholar 

  7. He PL, Hu NF, Rusling JF (2004) Driving Forces for layer-by-layer self-assembly of films of SiO2 nanoparticles and heme proteins. Langmuir 20:722–729

    Article  CAS  Google Scholar 

  8. Xian YZ, Xian Y, Zhou LH et al (2007) Encapsulation hemoglobin in ordered mesoporous silicas: Influence factors for immobilization and bioelectrochemistry. Electrochem Commun 9:142–148

    Article  CAS  Google Scholar 

  9. Bistolas N, Wollenberger U, Jung C et al (2005) Cytochrome P450 biosensors—a review. Biosens Bioelectron 20:2408–2423

    Article  CAS  Google Scholar 

  10. Huang H, Hu NF, Zeng Y et al (2002) Electrochemistry and electrocatalysis with heme proteins in chitosan biopolymer films. Anal Biochem 308:141–151

    Article  CAS  Google Scholar 

  11. Lu XB, Wen ZH, Li JH (2006) Hydroxyl-containing antimony oxide bromide nanorods combined with chitosan for biosensors. Biomaterials 27:5740–5747

    Article  CAS  Google Scholar 

  12. Chen D, Liu JS, Wang P et al (2007) Fabrication of monodisperse zirconia-coated core–shell and hollow spheres in mixed solvents. Colloids Surf A: Physicochem Eng Aspects 302:461–466

    Article  CAS  Google Scholar 

  13. Graf C, Blaaderen AV (2002) Metallodielectric colloidal core–shell particles for photonic applications. Langmuir 18:524–534

    Article  CAS  Google Scholar 

  14. Liu RJ, Li YJ, Zhao H et al (2008) Synthesis and characterization of Al2O3 hollow spheres. Mater Lett 62:2593–2595

    Article  CAS  Google Scholar 

  15. Kalele SA, Ashtaputre SS, Hebalkar NY et al (2005) Optical detection of antibody using silica–silver core–shell particles. Chem Phys Lett 404:136–141

    Article  CAS  Google Scholar 

  16. Applerot G, Lipovsky A, Dror R et al (2009) Enhanced antibacterial activity of nanocrystalline ZnO due to increased ROS-mediated cell injury. Adv Funct Mater 19:842–852

    Article  CAS  Google Scholar 

  17. Liu ZM, Liu YL, Yang HF et al (2005) A mediator-free tyrosinase biosensor based on ZnO sol–gel matrix. Electroanalysis 17:1065–1070

    Article  CAS  Google Scholar 

  18. Lu XB, Zhang HJ, Ni YW et al (2008) Porous nanosheet-based ZnO microspheres for the construction of direct electrochemical biosensors. Biosens Bioelectron 24:93–98

    Article  CAS  Google Scholar 

  19. Li XF, Lv KL, Deng KJ et al (2009) Synthesis and characterization of ZnO and TiO2 hollow spheres with enhanced photoreactivity. Mater Sci Eng B 158:40–47

    Article  CAS  Google Scholar 

  20. Agrawal M, Gupta S, Pich A et al (2009) A facile approach to fabrication of ZnO–TiO2 hollow spheres. Chem Mater 21:5343–5348

    Article  CAS  Google Scholar 

  21. Deng ZW, Chen M, Gu GX et al (2008) A facile method to fabricate ZnO hollow spheres and their photocatalytic property. J Phys Chem B 11:216–222

    Google Scholar 

  22. Murray RW, Bard AJ (1984) Electroanalytical chemistry, vol 13. Marcel Dekker, New York, pp 191–368

    Google Scholar 

  23. Laviron E (1974) Adsorption autoinhibition and autocatalysis in polarography and in linear potential sweep voltammetry. J Electroanal Chem 52:355–393

    Article  CAS  Google Scholar 

  24. Liu HH, Tian ZQ, Lu ZX et al (2004) Direct electrochemistry and electrocatalysis of heme-proteins entrapped in agarose hydrogel films. Biosens Bioelectron 20:294–304

    Article  CAS  Google Scholar 

  25. Laviron E (1979) The use of linear potential sweep voltammetry and of a.c. voltammetry for the study of the surface electrochemical reaction of strongly adsorbed systems and of redox modified electrodes. J Electroanal Chem 100:263–270

    Article  CAS  Google Scholar 

  26. Liu YG, Lu CL, Hou WH et al (2008) Direct electron transfer of hemoglobin in layered a-zirconium phosphate with a high thermal stability. Anal Biochem 375:27–34

    Article  CAS  Google Scholar 

  27. Sun W, Zhai ZQ, Wang DD et al (2009) Electrochemistry of hemoglobin entrapped in a Nafion/nano-ZnO film on carbon ionic liquid electrode. Bioelectrochemistry 74:295–300

    Article  CAS  Google Scholar 

  28. Nassar AE, Zhang Z, Hu N et al (1997) Proton coupled electron transfer from electrodes to myoglobin in ordered biomembrane-like films. J Phys Chem B 101:2224–2231

    Article  CAS  Google Scholar 

  29. Huang H, He P, Hu N et al (2003) Electrochemical and electrocatalytic properties of myoglobin and hemoglobin incorporated in carboxymethyl cellulose films. Bioelectrochemistry 61:29–38

    Article  CAS  Google Scholar 

  30. Trushina E, Oda R, Landers J et al (1997) Determination of nitrite and nitrate reduction by capillary ion electrophoresis. Electrophoresis 18:1890–1898

    Article  CAS  Google Scholar 

  31. Zheng W, Li J, Zheng YF (2008) An amperometric biosensor based on hemoglobin immobilized in poly(ε-caprolactone) film and its application. Biosens Bioelectron 23:1562–1566

    Article  CAS  Google Scholar 

  32. Wang Y, Qian WQ, Tan Y et al (2007) Direct electrochemistry and electroanalysis of hemoglobin adsorbed in self-assembled films of gold nanoshells. Talanta 72:1134–1140

    Article  CAS  Google Scholar 

  33. Lai GS, Zhang HL, Han DY (2008) A novel hydrogen peroxide biosensor based on hemoglobin immobilized on magnetic chitosan microspheres modified electrode. Sensors Actuators B 129:497–503

    Article  Google Scholar 

  34. Kamin A, Wilson GS (1980) Rotating ringdisk enzyme electrode for biocatalysis kinetic studies and characterization of the immobilized enzyme layer. Anal Chem 52:1198–1205

    Article  CAS  Google Scholar 

  35. Zhao G, Feng JJ, Xu J et al (2005) Direct electrochemistry and electrocatalysis of heme proteins immobilized on self assembled ZrO2 film. Electrochem Commun 7:724–729

    Article  CAS  Google Scholar 

  36. Feng JJ, Xu JJ, Chen HY (2005) Direct electron transfer and electrocatalysis of hemoglobin adsorbed onto electrodeposited mesoporous tungsten oxide. Electrochem Commun 8:77–82

    Article  Google Scholar 

  37. Liu MC, Zhao GH, Zhao KJ et al (2009) Direct electrochemistry of hemoglobin at vertically aligned self-doping TiO2 nanotubes: a mediator-free and biomolecule-substantive electrochemical interface. Electrochem Commun 11:1397–1400

    Article  Google Scholar 

  38. Rui Q, Komori KK, Tian Y et al (2010) Electrochemical biosensor for the detection of H2O2 from living cancer cells based on ZnO nanosheets. Anal Chim Acta 670:57–62

    Article  CAS  Google Scholar 

  39. Zhang YW, Zhang Y, Wang H et al (2009) An enzyme immobilization platform for biosensor designs of direct electrochemistry using flower-like ZnO crystals and nano-sized gold particles. J Electroanal Chem 627:9–14

    Article  CAS  Google Scholar 

  40. Xiang CL, Zou YJ, Sun LX et al (2009) Direct electrochemistry and enhanced electrocatalysis of horseradish peroxidase based on flowerlike ZnO–gold nanoparticle—Nafion nanocomposite. Sens Actuators B 136:158–162

    Article  Google Scholar 

  41. Yang Z, Zong XL, Ye ZZ et al (2010) The application of complex multiple fork like ZnO nanostructures to rapid and ultrahigh sensitive hydrogen peroxide biosensors. Biomaterials 31:7534–7541

    Article  CAS  Google Scholar 

  42. Zhao G, Xu JJ, Chen H (2006) Interfacing myoglobin to graphite electrode with an electrodeposited nanoporous ZnO film. Anal Biochem 350:145–150

    Article  CAS  Google Scholar 

  43. Kafi AKM, Lee DY, Park SH et al (2007) Amperometric biosensor based on direct electrochemistry of hemoglobin in poly allylamine (PAA) film. Thin Solid Films 515:5179–5183

    Article  CAS  Google Scholar 

  44. Chen L, Lu GX (2007) Novel amperometric biosensor based on composite film assembled by polyelectrolyte-surfactant polymer, carbon nanotubes and hemoglobin. Sens. Actuators B 121:423–429

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Changhua Liu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Liu, C., Xu, J. & Wu, Z. Direct electron transfer and electrochemical study of hemoglobin immobilized in ZnO hollow spheres. Bioprocess Biosyst Eng 34, 931–938 (2011). https://doi.org/10.1007/s00449-011-0544-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00449-011-0544-9

Keywords

Navigation