Skip to main content
Log in

Sequential pretreatment strategies under mild conditions for efficient enzymatic hydrolysis of wheat straw

  • Original Paper
  • Published:
Bioprocess and Biosystems Engineering Aims and scope Submit manuscript

Abstract

This work studies the sequential execution of dilute sulfuric acid (DAP) (0.1–0.75 %, v/v) and dilute sodium hydroxide (AKP) (0.25–3 %, w/v) [i.e., DAP followed by AKP (DAP+AKP) and vice versa (AKP+DAP)] at low temperatures (<121 °C) and short reaction times (5–60 min) for maximizing sugar recovery in the enzymatic hydrolysis of wheat straw with low enzyme dosage. The pretreatment effectiveness was measured by the sum of the severity factors of both pretreatments and the saccharification yield achieved in the subsequent stage of enzymatic hydrolysis. Degradation compounds were quantified and mass balance calculations were carried out for each pretreatment sequence to verify the correct account of the input biomass and output products. Results show that sequential pretreatments (AKP+DAP and DAP+AKP) had a positive effect in enzyme accessibility thus improving monosaccharide yields compared to single DAP and AKP pretreatments. DAP+AKP achieved a high xylose yield (ca. 0.867 of theoretical) at the DAP stage, while no xylose monosaccharides were detected in the subsequent AKP. After enzyme saccharification of double-pretreated solids, the total monosaccharide yield was 0.786 (of theoretical). For AKP+DAP sequence, lower results were obtained (total monosaccharide yield 0.783 of theoretical). Sequential pretreatments total yields increased by 21 % compared to single pretreatments. AKP removed more than half of the lignin from the wheat straw in all cases. Acid and alkali concentrations played a relevant role in all pretreatment sequences, while reaction time and temperature were less important with an almost-linear effect on the total monosaccharide yields.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Alvira P, Ballesteros M, Negro M (2010) Pretreatment technologies for an efficient bioethanol production process based on enzymatic hydrolysis: a review. Bioresour Technol 101(13):4851–4861. doi:10.1016/j.biortech.2009.11.093

    Article  CAS  Google Scholar 

  2. Adler E (1977) Lignin Chemistry- Past, present and future. Wood Sci Technol 11(3):169–218. doi:10.1007/BF00365615

    Article  CAS  Google Scholar 

  3. Arantes V, Saddler J (2010) Access to cellulose limits the efficiency of enzymatic hydrolysis: the role of amorphogenesis. Biotechnol Biofuels 3:4. doi:10.1186/1754-6834-3-4

    Article  Google Scholar 

  4. Balat M, Balat H (2009) Recent trends in global production and utilization of bio-ethanol fuel. Appl Energy 86(11):2273–2282

    Article  CAS  Google Scholar 

  5. Bjerre AB, Olesen AB, Fernqvist T, Plöger A, Schmidt AS (1996) Pretreatment of wheat straw using combined wet oxidation and alkaline hydrolysis resulting in convertible cellulose and hemicellulose. Biotechnol Bioeng 49:568–577. doi:10.1002/(SICI)1097-0290(19960305)49:5<568:AID-BIT10>3.0.CO;2-6

    Article  CAS  Google Scholar 

  6. Carvalheiro F, Silva-fernandes T (2009) Wheat Straw autohydrolysis: process optimization and products characterization. Appl Biochem Biotechnol 153(1–3):84–93. doi:10.1007/s12010-008-8448-0

    Article  CAS  Google Scholar 

  7. Carrillo F, Lis M, Colom X, Lopez-Mesas J, Valldeperas J (2005) Effect of alkali pretreatment on cellulose hydrolysis of wheat straw: kinetic study. Process Biochem 40(10):3360–3364. doi:10.1016/j.procbio.2005.03.003

    Article  CAS  Google Scholar 

  8. Chandra RP, Bura R, Mabee WE, Berlin A, Pan X, Saddler JN (2007) Substrate Pretreatment: the key to effective enzymatic hydrolysis of lignocellulosics. Adv Biochem Eng/Biotechnol 108:67–93. doi:10.1007/10_2007_064

    Article  CAS  Google Scholar 

  9. Chang VS, Nagwani M, Holtzapple MT (1998) Lime pretreatment of crop residues bagasse and wheat straw. Appl Biochem Biotechnol 74(3):135–159. doi:10.1007/BF02825962

    Article  CAS  Google Scholar 

  10. Chen Y, Stevens MA, Zhu Y, Holmes J, Xu H (2013) Understanding of alkaline pretreatment parameters for corn stover enzymatic saccharification. Biotechnol Biofuels 6(1):8. doi:10.1186/1754-6834-6-8

    Article  CAS  Google Scholar 

  11. Delgenes JP, Moletta R, Navarro JM (1996) Effects of lignocellulose degradation products on ethanol fementations of glucose and xylose by saccharomyces cerevisiae, Zymomonas mobilis, Pichia stipitis and candida shehatae. Enzyme Microbial Technol 01/1996, doi:10.1016/0141-0229(95)00237-5

  12. Hamelinck CN, Van Hooijdonk G, Faaij AP (2005) Ethanol from lignocellulosic biomass: techno-economic performance in short-, middle- and long-term. Biomass Bioenergy 28(4):384–410. doi:10.1016/j.biombioe.2004.09.002

    Article  CAS  Google Scholar 

  13. Hendricks ATWM, Zeeman G (2009) Bioresource Technology Pretreatments to enhance the digestibility of lignocellulosic biomass. Bioresour Technol 100:10–18. doi:10.1016/j.biortech.2008.05.027

    Article  Google Scholar 

  14. Huang H, Guo X, Li D, Liu M, Wu J, Ren H (2011) Identification of crucial yeast inhibitors in bio-ethanol and improvement of fermentation at high pH and high total solids. Bioresour Technol (impact factor: 4.75). 05/2011; 102(16):7486–7493. doi:10.1016/j.biortech.2011.05.008

  15. Jeoh T, Ishizawa CI, Davis MF, Himmel ME, Adney WS, Johnson DK (2007) Cellulase digestibility of pretreated biomass is limited by cellulose accessibility. Biotechnol Bioeng 98(1):112–122. doi:10.1002/bit.21408

    Article  CAS  Google Scholar 

  16. Kim TH (2011) Sequential hydrolysis of hemicellulose and lignin in lignocellulosic biomass by two-stage percolation process using dilute sulfuric acid and ammonium hydroxide. Korean J Chem Eng 20(11):2156–2162. doi:10.1007/s11814-011-0093-6

    Article  Google Scholar 

  17. Kaparaju P, Serrano M, Thomsen AB, Kongjan P, Angelidaki I (2009) Bioethanol, biohydrogen and biogas production from wheat straw in a biorefinery concept. Bioresour Technol 100:2562–2568

    Article  CAS  Google Scholar 

  18. Klinke HB, Thomsen AB, Ahring BK (2004) Inhibition of ethanol-producing yeast and bacteria by degradation products produced during pre-treatment of biomass. Appl Microbiol Biotechnol 66:10–26. doi:10.1007/s00253-004-1642-2

    Article  CAS  Google Scholar 

  19. McIntosh S, Vancov T (2011) Optimisation of dilute alkaline pretreatment for enzymatic saccharification of wheat straw. Biomass Bioenergy 35(7):3094–3103. doi:10.1016/j.biombioe.2011.04.018

    Article  CAS  Google Scholar 

  20. Modig T, Almeida J, Gorwa-Grauslund M, Liden G (2008) Variability of the response of Saccharomyces cerevisiae strains to lignocellulose hydrolysate. Biotechnol Bioeng 100(3):423–429. doi:10.1002/bit.21789

    Article  CAS  Google Scholar 

  21. Mosier N, Wyman C, Dale B, Elander R, Lee YY, Holtzapple M, Ladisch MR (2005) Features of Promising Technologies for Pretreatment of Lignocellulosic Biomass. Bioresour Technol 96(6):673–686. doi:10.1016/j.biortech.2004.06.025

    Article  CAS  Google Scholar 

  22. Mussatto SI, Dragone CG, Guimarães PMR, Silva JPA, Carneiro LM, Roberto IC, Vicente A, Domingues L, Teixeira JA (2010) Technological trends, global market, and challenges of bio-ethanol production. Biotechnol Adv 28(6):817–830

    Article  CAS  Google Scholar 

  23. Eva Palmqvist, Halfdan Grage, Meinander NQ, Hahn-Hardegal B (1999) Main and interaction effects of acetic acid, furfural, and p-hydroxybenzoic acid on growth and ethanol productivity of yeast. Biotechnol Bioeng 63(1):46–55

    Article  Google Scholar 

  24. Panagiotopoulos IA, Bakker RR, de Vrije T, Koukios EG (2011) Effect of pretreatment severity on the conversion of barley straw to fermentable substrates and the release of inhibitory compounds. Bioresour Technol 102(24):11204–11211. doi:10.1016/j.biortech.2011.09.090

    Article  CAS  Google Scholar 

  25. Panagiotopoulos I, Lignos G, Bakker R, Koukios E (2012) Effect of low severity dilute acid pretreatment of barley straw and decreased enzyme loading hydrolysis on the production of fermentable substrates and the release of inhibitory compounds. J Clean Prod 32:45–51. doi:10.1016/j.jclepro.2012.03.019

    Article  CAS  Google Scholar 

  26. Pedersen M, Meyer A (2010) Lignocellulose pretreatment severity relating pH to biomatrix opening. New Biotechnol 27(6):739–750. doi:10.1016/j.nbt.2010.05.003

    Article  CAS  Google Scholar 

  27. Persson T, Ren JL, Joelsson E, Jönsson AS (2009) Fractionation of wheat and barley straw to access high-molecular-mass hemicelluloses prior to ethanol production. Bioresour Technol 100(17):3906–3913. doi:10.1016/j.biortech.2009.02.063

    Article  CAS  Google Scholar 

  28. Rojas-Rejon O, Sanchez A (2014) The impact of particle size and initial solid loading on thermochemical pretreatment of wheat straw for improving sugar recovery. Bioprocess Biosyst Eng 37(7):1427–1436. doi:10.1007/s00449-013-1115-z

    Article  CAS  Google Scholar 

  29. Sadhukhan J, Mustafa MA, Misailidis N, Mateos-Salvador F, Du C, Campbell GM (2008) Value analysis tool for feasibility studies of biorefineries integrated with value added production. Chem Eng Sci 63:503–519

    Article  CAS  Google Scholar 

  30. Saha BC, Cotta MA (2006) Ethanol production from alkaline peroxide pretreated enzymatically saccharified wheat straw. Biotechnol Prog 22(2):449–453. doi:10.1021/bp050310r

    Article  CAS  Google Scholar 

  31. Saha BC, Iten LB, Cotta MA, Wu YV (2005) Dilute acid pretreatment, enzymatic saccharification and fermentation of wheat straw to ethanol. Process Biochem 40(12):3693–3700. doi:10.1016/j.procbio.2005.04.006

    Article  CAS  Google Scholar 

  32. Sánchez OJ, Cardona CA (2008) Trends in biotechnological production of fuel ethanol from different feedstocks. Bioresour Technol 99(13):5270–5295. doi:10.1016/j.biortech.2007.11.013

    Article  Google Scholar 

  33. Sanchez A, Sevilla-Güitrón V, Magana G, Gutierrez L (2013) Parametric analysis of total costs and energy efficiency of 2G enzymatic ethanol production. Fuel 113:165–179

    Article  CAS  Google Scholar 

  34. Shujing Z, Deepak R, Yixiang X, Milford A (2012) Alkali combined extrusion pretreatment of corn stover to enhance enzyme saccharification. Ind Crops Prod 37(1):352–357. doi:10.1016/j.indcrop.2011.12.001

    Article  Google Scholar 

  35. Sun Y, Cheng J (2002) Hydrolysis of lignocellulosic materials for ethanol production: a review. Bioresour Technol 83(1):1–11. doi:10.1016/S0960-8524(01)00212-7

    Article  CAS  Google Scholar 

  36. Varga E, Szengyel Z, Réczey K (2002) Chemical pretreatments of corn stover for enhancing enzymatic digestibility. Appl Biochem Biotechnol 98–100(1–9):73–87. doi:10.1385/ABAB:98-100:1-9:73

    Article  Google Scholar 

  37. William H (2005) Official methods of analysis of AOAC International, 18th edition, Method 973.18 Fiber (acid detergent) and lignin (H2SO4) in animal Feed, Maryland USA

  38. Zeng J, Gregory L, Helms GL, Gao X, Chen S (2013) Quantification of wheat straw lignin structure by comprehensive NMR analysis. Chen J Agric Food Chem 61(46):10848–10857

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors want to thank reviewers for their comments and suggestions to improve the preliminary version of the manuscript. Partial financial support from Secretary of Energy (SENER), Sustainability Energy Fund, Mexico (project 150001) is kindly acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Arturo Sanchez.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sanchez, A., Gil, J.C., Rojas-Rejón, O.A. et al. Sequential pretreatment strategies under mild conditions for efficient enzymatic hydrolysis of wheat straw. Bioprocess Biosyst Eng 38, 1127–1141 (2015). https://doi.org/10.1007/s00449-015-1355-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00449-015-1355-1

Keywords

Navigation