Skip to main content
Log in

Wheat Straw Autohydrolysis: Process Optimization and Products Characterization

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

Wheat straw was subjected to autohydrolysis treatments in order to selectively hydrolyze the hemicellulose fraction. The effects of temperature (150–240°C) and non-isothermal reaction time on the composition of both liquid and solid phases were evaluated and interpreted using the severity factor (log R 0). The operational conditions leading to the maximum recovery of hemicellulose-derived sugars were established for log R 0 = 3.96 and correspond to 64% of the original (arabino)xylan with 80% of sugars as xylooligosaccharides. Under these conditions, a solubilization of 58% xylan, 83% arabinan, and 98% acetyl groups occurred. Glucan was mainly retained in the solid phase (maximum solubilization 16%), which enables an enrichment of the solid phase to contain up to 61% glucan. Delignification was not extensive, being utmost 15%. The yields of soluble products, including sugars, acetic acid, and degradation compounds, such as, furfural, 5-hydroxymethylfurfural furfural obtained suggest the fitness of liquid stream for fermentation purposes or to obtain xylooligosaccharides with potential applications in food, pharmaceutical, and cosmetic industries.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Duarte, L. C., Esteves, M. P., Carvalheiro, F., & Gírio, F. M. (2007). Biotechnology Journal, 2, 1556–1563. doi:10.1002/biot.200700183.

    Article  CAS  Google Scholar 

  2. Bilalis, D., Sidiras, N., Economou, G., & Vakali, C. (2003). Journal Agronomy & Crop Science, 189, 233–241. doi:10.1046/j.1439-037X.2003.00029.x.

    Article  Google Scholar 

  3. Kumar, S., & Gomes, J. (2008). Animal Feed Science and Technology, 144, 149–166. doi:10.1016/j.anifeedsci.2007.09.030.

    Article  CAS  Google Scholar 

  4. Ward, P. L., Wohlt, J. E., Zajac, P. K., & Cooper, K. R. (2000). Journal of Dairy Science, 83, 359–367.

    Article  CAS  Google Scholar 

  5. Thomsen, M. H., Thygesen, A., Jorgensen, H., Larsen, J., Christensen, B. H., & Thomsen, A. B. (2006). Applied Biochemistry and Biotechnology, 130, 448–460. doi:10.1385/ABAB:130:1:447.

    Article  Google Scholar 

  6. Deniz, I., Kirci, H., & Ates, S. (2004). Industrial Crops and Products, 19, 237–243. doi:10.1016/j.indcrop.2003.10.011.

    Article  CAS  Google Scholar 

  7. Kim, S., & Dale, B. E. (2004). Biomass and Bioenergy, 26, 361–375. doi:10.1016/j.biombioe.2003.08.002.

    Article  Google Scholar 

  8. Pérez, J. A., González, A., Oliva, J. M., Ballesteros, I., & Manzanares, P. (2007). Journal of Chemical Technology and Biotechnology (Oxford, Oxfordshire), 82, 929–938. doi:10.1002/jctb.1765.

    Article  CAS  Google Scholar 

  9. Kabel, M. A., Bos, G., Zeevalking, J., Voragen, A. G. J., & Schols, H. A. (2007). Bioresource Technology, 98, 2034–2042. doi:10.1016/j.biortech.2006.08.006.

    Article  CAS  Google Scholar 

  10. Saha, B. C., Iten, L. B., Cotta, M. A., & Wu, Y. V. (2005). Biotechnology Progress, 21, 816–822. doi:10.1021/bp049564n.

    Article  CAS  Google Scholar 

  11. Saha, B. C., & Cotta, M. A. (2006). Biotechnology Progress, 22, 449–453. doi:10.1021/bp050310r.

    Article  CAS  Google Scholar 

  12. Montané, D., Farriol, X., Salvadó, J., Jollez, P., & Chornet, E. (1998). Biomass and Bioenergy, 14, 261–276. doi:10.1016/S0961-9534(97)10045-9.

    Article  Google Scholar 

  13. Ballesteros, M., Oliva, J. M., Negro, M. J., Manzanares, P., & Ballesteros, I. (2004). Process Biochemistry, 39, 1843–1848. doi:10.1016/j.procbio.2003.09.011.

    Article  CAS  Google Scholar 

  14. Mcginnis, G. D., Wilson, W. W., & Mullen, C. E. (1983). Industrial & Engineering Chemistry Product Research and Development, 22, 352–357. doi:10.1021/i300010a036.

    Article  CAS  Google Scholar 

  15. Palm, M., & Zacchi, G. (2003). Biomacromolecules, 4, 617–623. doi:10.1021/bm020112d.

    Article  CAS  Google Scholar 

  16. Nabarlatz, D., Ebringerová, A., & Montané, D. (2007). Carbohydrate Polymers, 69, 20–28. doi:10.1016/j.carbpol.2006.08.020.

    Article  CAS  Google Scholar 

  17. Rivas, B., Moldes, A. B., Domínguez, J. M., & Parajó, J. C. (2004). Enzyme and Microbial Technology, 34, 627–634. doi:10.1016/j.enzmictec.2004.01.011.

    Article  CAS  Google Scholar 

  18. Garrote, G., Yañez, R., Alonso, J. L., & Parajo, J. C. (2008). Industrial & Engineering Chemistry Research, 47, 1336–1345. doi:10.1021/ie071201f.

    Article  CAS  Google Scholar 

  19. Garrote, G., Cruz, J. M., Moure, A., Domínguez, H., & Parajó, J. C. (2004). Trends in Food Science & Technology, 15, 191–200. doi:10.1016/j.tifs.2003.09.016.

    Article  CAS  Google Scholar 

  20. Carvalheiro, F., Esteves, M. P., Parajó, J. C., Pereira, H., & Gírio, F. M. (2004). Bioresource Technology, 91, 93–100. doi:10.1016/S0960-8524(03)00148-2.

    Article  CAS  Google Scholar 

  21. Silva-Fernandes, T., Carvalheiro, F., Duarte, L. C., & Gírio, F. M. (2008) in Bioenergy: challenges and opportunities Guimarães.

  22. Canilha, L., Silva, J. B. A. E., Felipe, M. G. A., & Carvalho, W. (2003). Biotechnology Letters, 25, 1811–1814. doi:10.1023/A:1026288705215.

    Article  CAS  Google Scholar 

  23. Tuohy, K. M., Kolida, S., & Gibson, G. R. (2004). Agro Food Industry Hi-Tech, 15, 33–35.

    Google Scholar 

  24. Overend, R. P., & Chornet, E. (1987). Philosophical Transactions of the Royal Society of London. Series A: Mathematical and Physical Sciences, 321, 523–536. doi:10.1098/rsta.1987.0029.

    Article  CAS  Google Scholar 

  25. Graham, H. D. (1992). Journal of Agricultural and Food Chemistry, 40, 801–805. doi:10.1021/jf00017a018.

    Article  CAS  Google Scholar 

  26. Sun, X. F., Sun, R. C., Fowler, P., & Baird, M. S. (2005). Journal of Agricultural and Food Chemistry, 53, 860–870. doi:10.1021/jf040456q.

    Article  CAS  Google Scholar 

  27. Moura, P., Barata, R., Carvalheiro, F., Gírio, F., Loureiro-Dias, M. C., & Esteves, M. P. (2007). Lwt—Food Science and Technology, 40, 963–972.

    CAS  Google Scholar 

  28. Carvalheiro, F., Duarte, L. C., Medeiros, R., & Gírio, F. M. (2004). Applied Biochemistry and Biotechnology, 113–116, 1059–1072. doi:10.1385/ABAB:115:1-3:1059.

    Article  Google Scholar 

  29. Heitz, M., Capek-Ménard, E., Koeberle, P. G., Gagné, J., Chornet, E., Overend, R. P., Taylor, J. D., & Yu, E. (1991). Bioresource Technology, 35, 23–32. doi:10.1016/0960-8524(91)90078-X.

    Article  CAS  Google Scholar 

  30. Garrote, G., Domínguez, H., & Parajó, J. C. (1999). Holz als Roh- und Werkstoff, 57, 191–202. doi:10.1007/s001070050039.

    Article  CAS  Google Scholar 

  31. Ramos, L. P. (2003). Quimica Nova, 26, 863–871. doi:10.1590/S0100-40422003000600015.

    CAS  Google Scholar 

  32. Liavoga, A. B., Bian, Y., & Seib, P. A. (2007). Journal of Agricultural and Food Chemistry, 55, 7758–7766. doi:10.1021/jf070862k.

    Article  CAS  Google Scholar 

  33. Garrote, G., Domínguez, H., & Parajó, J. C. (1999). Journal of Chemical Technology and Biotechnology (Oxford, Oxfordshire), 74, 1101–1109. doi:10.1002/(SICI)1097-4660(199911)74:11<1101::AID-JCTB146>3.0.CO;2-M.

    Article  CAS  Google Scholar 

  34. Duarte, L. C., Silva-Fernandes, T., Carvalheiro, F., & Gírio, F. M. (2009). Applied Biochemistry and Biotechnology. doi:10.1007/s12010-008-8426-6

  35. Chen, H. Z., & Liu, L. Y. (2007). Bioresource Technology, 98, 666–676. doi:10.1016/j.biortech.2006.02.029.

    Article  CAS  Google Scholar 

  36. Garrote, G., & Parajó, J. C. (2002). Wood Science and Technology, 36, 111–123. doi:10.1007/s00226-001-0132-2.

    Article  CAS  Google Scholar 

  37. Bjerre, A. B., Olesen, A. B., Fernqvist, T., Ploger, A., & Schmidt, A. S. (1996). Biotechnology and Bioengineering, 49, 568–577. doi:10.1002/(SICI)1097-0290(19960305)49:5<568::AID-BIT10>3.0.CO;2-6.

    Article  CAS  Google Scholar 

  38. Chen, Y., Sharma-Shivappa, R. R., Keshwani, D., & Chen, C. (2007). Applied Biochemistry and Biotechnology, 142, 276–290. doi:10.1007/s12010-007-0026-3.

    Article  CAS  Google Scholar 

  39. McMillan, J. D. (1994). In M. E. Himmel, J. O. Baker, & R. P. Overend (Eds.), Enzymatic conversion of biomass for fuels production pp. 411–437. Washington, DC: American Chemical Society.

    Google Scholar 

  40. Yang, B., & Wyman, C. E. (2004). Biotechnology and Bioengineering, 86, 88–95. doi:10.1002/bit.20043.

    Article  CAS  Google Scholar 

  41. Yoshida, M., Liu, Y., Uchida, S., Kawarada, K., Ukagami, Y., Ichinose, H., Kaneko, S., & Fukuda, K. (2008). Bioscience, Biotechnology, and Biochemistry, 72, 805–810. doi:10.1271/bbb.70689.

    Article  CAS  Google Scholar 

  42. Ohgren, K., Bura, R., Saddler, J., & Zacchi, G. (2007). Bioresource Technology, 98, 2503–2510. doi:10.1016/j.biortech.2006.09.003.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Authors are grateful to Fundação para a Ciência e a Tecnologia (FCT) for the financial support of this work (project BIOREFINO PTDC/AGR-AAM/71533/2006). Talita Silva-Fernandes gratefully acknowledges the grant funded by CEBio (Prime-IDEIA-AdI Project no. 70/00326).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Florbela Carvalheiro.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Carvalheiro, F., Silva-Fernandes, T., Duarte, L.C. et al. Wheat Straw Autohydrolysis: Process Optimization and Products Characterization. Appl Biochem Biotechnol 153, 84–93 (2009). https://doi.org/10.1007/s12010-008-8448-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-008-8448-0

Keywords

Navigation