Skip to main content

Substrate Pretreatment: The Key to Effective Enzymatic Hydrolysis of Lignocellulosics?

  • Chapter
  • First Online:
Biofuels

Part of the book series: Advances in Biochemical Engineering/Biotechnology ((ABE,volume 108))

Abstract

Although the structure and function of cellulase systems continue to be the subject of intense research, it is widely acknowledged that the rate and extent of the cellulolytic hydrolysis of lignocellulosic substrates is influenced not only by the effectiveness of the enzymes but also by the chemical, physical and morphological characteristics of the heterogeneous lignocellulosic substrates. Although strategies such as site-directed mutagenesis or directed evolution have been successfully employed to improve cellulase properties such as binding affinity, catalytic activity and thermostability, complementary goals that we and other groups have studied have been the determination of which substrate characteristics are responsible for limiting hydrolysis and the development of pretreatment methods that maximize substrate accessibility to the cellulase complex. Over the last few years we have looked at the various lignocellulosic substrate characteristics at the fiber, fibril and microfibril level that have been modified during pretreatment and subsequent hydrolysis. The initial characteristics of the woody biomass and the effect of subsequent pretreatment play a significant role on the development of substrate properties, which in turn govern the efficacy of enzymatic hydrolysis. Focusing particularly on steam pretreatment, this review examines the influence that pretreatment conditions have on substrate characteristics such as lignin and hemicellulose content, crystallinity, degree of polymerization and specific surface, and the resulting implications for effective hydrolysis by cellulases.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Lynd LR, Weimer PJ, van Zyl WH, Pretorius IS (2002) Microbiol Mol Biol R 66:506

    Article  CAS  Google Scholar 

  2. Mansfield SD, Mooney C, Saddler JN (1999) Biotechnol Prog 15:804

    Article  CAS  Google Scholar 

  3. Sheehan J, Himmel M (1999) Biotechnol Prog 15:817

    Article  CAS  Google Scholar 

  4. Zhang YHP, Himmel ME, Mielenz JR (2006) Biotechnol Adv 24:452

    Article  CAS  Google Scholar 

  5. Demain AL, Newcomb M, Wu JHD (2005) Microbiol Mol Biol R 69:124

    Article  CAS  Google Scholar 

  6. Sun Y, Cheng JY (2002) Bioresource Technol 83:1

    Article  CAS  Google Scholar 

  7. Zhang P, Lynd LR (2004) Biotechnol Bioeng 88:797–824

    Article  CAS  Google Scholar 

  8. Anon (2005) Enzyme contract concludes successfully. Ethanol Producer, June 2005, p 18; Available online at http://www.ethanolproducer.com/ , last visited: 23 April 2007

  9. Kabel MA, Bos G, Zeevalking J, Voragen AGJ, Schols HA (2006) Bioresource Technol 98:2034–2042

    Article  CAS  Google Scholar 

  10. Cao Y, Tan H (2004) J Macromol Sci B 43:1115–1121

    Article  CAS  Google Scholar 

  11. Tanaka M, Ikesaka M, Matsuno R (1988) Biotechnol Bioeng 32:698–706

    Article  CAS  Google Scholar 

  12. Ander P, Ericksson KE (1977) Physiol Plant 41:239–248

    Article  CAS  Google Scholar 

  13. Millett MA, Effland MJ, Caulfield DP (1979) Adv Chem Ser 181:71–89

    Article  Google Scholar 

  14. Tassinari T, Macy C, Spano L (1980) Biotechnol Bioeng 22:1689–1705

    Article  CAS  Google Scholar 

  15. Tassinari T, Macy C, Spano L (1982) Biotechnol Bioeng 24:1495–1505

    Article  CAS  Google Scholar 

  16. Mais U, Esteghlalian AR, Saddler JN, Mansfield SD (2002) Appl Biochem Biotechnol 98–100:815–832

    Article  Google Scholar 

  17. Mooney CM, Mansfield SD, Beatson RP, Saddler JN (1999) Enzyme Microb Tech 25:644–650

    Article  CAS  Google Scholar 

  18. Berlin A, Balakshin M, Gilkes N, Kadla J, Maximenko V, Kubo S, Saddler JN (2006) J Biotechnol 125:198–209

    Article  CAS  Google Scholar 

  19. Wood TM, Saddler JN (1988) Increasing the availability of cellulose in biomass materials. In: Wood WA, Kellogg ST (eds) Methods in Enzymology, vol 160. Academic, San Diego, CA, p 311

    Google Scholar 

  20. Wooley R, Ruth M, Glassner D, Sheehan J (1999) Biotechnol Prog 15:794–803

    Article  CAS  Google Scholar 

  21. Hinman ND, Schell DJ, Riley CJ, Bergeron PW, Walter PJ (1992) Appl Biochem Biotechnol 34–35:639–649

    Article  Google Scholar 

  22. Mosier N, Wyman C, Dale B, Elander R, Lee YY, Holtzapple M, Ladisch M (2005) Bioresource Technol 96:673–686

    Article  CAS  Google Scholar 

  23. Bura R, Bothast RJ, Mansfield SD, Saddler JN (2003) Appl Biochem Biotechnol 105:319

    Article  Google Scholar 

  24. Excoffier G, Toussaint B, Vignon MR (1991) Biotechnol Bioeng 38:1308–1317

    Article  CAS  Google Scholar 

  25. Heitz M, Capek-Menard E, Koeberle PG, Gagne J, Chornet E (1991) Bioresource Technol 35:23–32

    Article  CAS  Google Scholar 

  26. Vlasenko E, Yu-Ding H, Labavitch JM, Shoemaker SP (1997) Bioresource Technol 57:109–119

    Article  Google Scholar 

  27. Clark TA, Mackie PH (1987) J Wood Chem Technol 7:373

    Article  CAS  Google Scholar 

  28. Avellar BK, Glasser WG (1998) Biomass Bioenerg 14:205

    Article  CAS  Google Scholar 

  29. Donaldson LA, Wong KKY, Mackie KL (1998) Wood Sci Technol 22:103–114

    Article  Google Scholar 

  30. Grethlein HE (1986) Enzyme Microb Tech 8:274–280

    Article  Google Scholar 

  31. Clark TA, Mackie KL, Dare PH, McDonals AG (1989) J Wood Chem Technol 9:135

    Article  CAS  Google Scholar 

  32. Carrasco F (1992) J Wood Chem Technol 12:213

    Article  CAS  Google Scholar 

  33. Schwald W, Samaridge T, Chan M, Breuil C, Saddler JN (1989) In: Coughlan MP (ed) Enzyme systems for lignocellulose degradation. Elsevier, Essex, UK, p 231

    Google Scholar 

  34. Boussaid AL, Esteghlalian AR, Gregg DJ, Lee KH, Saddler JN (2000) Appl Biochem Biotechnol 84–86:693

    Article  Google Scholar 

  35. Mackie KL, Brownell HH, West KL, Saddler JN (1985) J Wood Chem Technol 5:405

    Article  CAS  Google Scholar 

  36. Schwald W, Breuil C, Brownell HH, Chan M, Saddler JN (1989) Appl Biochem Biotechnol 20–21:29

    Article  Google Scholar 

  37. Eklund R, Galbe M, Zacchi G (1995) Bioresource Eng 52:225

    Article  CAS  Google Scholar 

  38. Tengborg C, Stenberg K, Galbe M, Zacchi G, Larsson S, Palmquist E, Hahn-Hägerdal B (1998) Appl Biochem Biotechnol 70–72:3

    Article  Google Scholar 

  39. Boussaid AL, Esteghlalian AR, Gregg DJ, Lee KH, Saddler JN (2000) Appl Biochem Biotechnol 84–86:693

    Article  Google Scholar 

  40. Boussaid A, Robinson J, Cai Y, Gregg DJ, Saddler JN (1999) Biotechnol Bioeng 64:284

    Article  CAS  Google Scholar 

  41. Heitz M, Carrasco F, Rubio M, Brown A, Chornet E (1987) Biomass 13:255–273

    Article  CAS  Google Scholar 

  42. Larsson S, Reimann A, Nilvebrant N, Jonsson L (1999) Appl Biochem Biotechnol 77–79:91–103

    Article  Google Scholar 

  43. Sineiro J, Dominguez H, Nunez MJ, Lema JM (1997) Biotechnol Lett 19:521–524

    Article  CAS  Google Scholar 

  44. Ando S, Arai I, Kiyoto K, Hanai SJ (1986) Ferment Technol 64:567–570

    Article  CAS  Google Scholar 

  45. Esteghlalian AR, Bilodeau M, Mansfield SD, Saddler JN (2001) Biotechnol Prog 17:1049

    Article  CAS  Google Scholar 

  46. Cullis IF, Saddler JN, Mansfield SD (2004) Biotechnol Bioeng 85:413

    Article  CAS  Google Scholar 

  47. Ballesteros I, Oliva JM, Navarro AA, Gonzalez A, Carrasco J, Ballesteros M (2000) Appl Biochem Biotechnol 84–86:97

    Article  Google Scholar 

  48. Smook GA (1982) Handbook for pulp and paper technologists. Joint Executive Committee of the Vocational Education Committee of the Pulp and Paper Industry, Montreal PQ, Canada

    Google Scholar 

  49. Fengel D, Wegener G (1989) Wood-chemistry, ultrastructure, reactions. De Gruyter, Berlin, Germany

    Google Scholar 

  50. Kim KH, Tucker MP, Keller FA, Aden A, Nguyen QA (2001) Appl Biochem Biotechnol 91–93:253–67

    Article  Google Scholar 

  51. Robinson J, Keating JD, Boussaid A, Mansfield SD, Saddler JN (2002) Appl Microbiol Biotechnol 59:443–448

    Article  CAS  Google Scholar 

  52. Yang B, Boussaid A, Mansfield SD, Gregg DJ, Saddler JN (2002) Biotechnol Bioeng 77:678–685

    Article  CAS  Google Scholar 

  53. Adler E (1977) Wood Sci Technol 11:169–218

    Article  CAS  Google Scholar 

  54. Sjostrom E (1981) Wood chemistry: fundamentals and applications 2nd edn. Academic, Washington DC, USA

    Google Scholar 

  55. Eriksson O, Lindgren B (1977) Svensk Papperstidning 80:59–63

    CAS  Google Scholar 

  56. Lai Y-Z (1991) In: Hon DN-S, Shiraishi N (eds) Wood and cellulose chemistry. Marcel Dekker, New York, USA

    Google Scholar 

  57. Pan X, Gilkes N, Kadla J, Pye K et al. (2006) Biotechnol Bioeng 94:851–861

    Article  CAS  Google Scholar 

  58. Teymouri F, Laureano-Perez L, Alizadeh H, Dale BE (2005) Bioresource Technol 96:2014

    Article  CAS  Google Scholar 

  59. Bura R (2004) Bioconversion of corn fibre to ethanol. PhD Thesis, University of British Columbia, Vancouver, Canada

    Google Scholar 

  60. Lloyd TA, Wyman CE (2005) Bioresource Technol 96:1967

    Article  CAS  Google Scholar 

  61. Josefsson T, Lennholm H, Gellerstedt G (2002) Holzforschung 56:289–297

    Article  CAS  Google Scholar 

  62. Yang B, Boussaid A, Mansfield SD, Gregg DJ, Saddler JN (2002) Biotechnol Bioeng 77:678–685

    Article  CAS  Google Scholar 

  63. Pan X, Zhang X, Gregg DJ, Saddler JN (2004) Appl Biochem Biotechnol 113–116:1103–1114

    Article  Google Scholar 

  64. Pan X, Zhang X, Xie D, Gregg DJ, Saddler JN (2005) Appl Biochem Biotechnol 121–124:1069–1080

    Article  Google Scholar 

  65. Palonen H, Viikari L (2004) Biotechnol Bioeng 86:550

    Article  CAS  Google Scholar 

  66. Felby C, Nielsen BR, Olesen PO, Skibsted LH (1997) Appl Microbiol Biotechnol 48:459–464

    Article  CAS  Google Scholar 

  67. Chandra RP, Ragauskas AJ (2002) Enzyme Microb Tech 30:855–861

    Article  CAS  Google Scholar 

  68. Mooney CA, Mansfield SD, Touhy MG, Saddler JN (1998) Bioresource Technol 64:113–119

    Article  CAS  Google Scholar 

  69. Yang B, Wyman CE (2006) Biotechnol Bioeng 94:611–617

    Article  CAS  Google Scholar 

  70. Eriksson T, Börjesson J, Tjerneld F (2002) Enzyme Microb Technol 31:353–364

    Article  CAS  Google Scholar 

  71. Hemmingson JA, Newman RH (1985) J Wood Chem Technol 5:159

    Article  CAS  Google Scholar 

  72. Hemmingson JA (1986) J Wood Chem Technol 6:113–125

    Article  CAS  Google Scholar 

  73. Robert D, Bardet M, Lapierre C, Gellerstedt G (1988) Cell Chem Technol 22:221–230

    CAS  Google Scholar 

  74. Shevchenko SM, Chang K, Gregg DJ, Saddler JN (2001) Cell Chem Technol 35:487–502

    CAS  Google Scholar 

  75. Argyropoulos DS (1994) J Wood Chem Technol 14:65–82

    Article  CAS  Google Scholar 

  76. Söderström J, Pilcher L, Galbe M, Zacchi G (2002) Appl Biochem Biotechnol 98–100:5

    Article  Google Scholar 

  77. Avergino GC, Wang DIC (1983) Biotechnol Bioeng 25:67–83

    Article  Google Scholar 

  78. Sewalt VJH, Glasser WG, Beauchemin KA (1997) J Agric Food Chem 45:1823–1828

    Article  CAS  Google Scholar 

  79. Ooshima H, Sakata M, Harano Y (1986) Biotechnol Bioeng 28:1727–1734

    Article  CAS  Google Scholar 

  80. Helle SS, Duff SJB, Cooper DG (1993) Biotechnol Bioeng 42:611–617

    Article  CAS  Google Scholar 

  81. Kaya F, Heitmann JA, Joyce TW (1995) Tappi J 78:150–157

    CAS  Google Scholar 

  82. Berlin A, Gilkes N, Kurabi A, Bura R et al. (2005) Appl Biochem Biotechnol 121:163

    Article  Google Scholar 

  83. Grethlein HE (1985) Biotechnol 3:155

    Article  CAS  Google Scholar 

  84. Saha BC (2003) J Ind Microbiol Biotechnol 30:279

    Article  CAS  Google Scholar 

  85. Heitz M, Capek-Menard E, Koeberle PG, Gagne J et al. (1991) Bioresource Technol 35:23

    Article  CAS  Google Scholar 

  86. Cantarella M, Cantarella L, Gallifuoco A, Spera A, Alfani F (2004) Biotechnol Prog 20:200

    Article  CAS  Google Scholar 

  87. Clark T, Mackie KL (1984) J Chem Biotechnol 34B:101

    CAS  Google Scholar 

  88. Dale BE, Leong CK, Pham TK, Esquivel VM, Rios I, Latimer VM (1996) Bioresource Technol 56:111

    Article  CAS  Google Scholar 

  89. Öhgren K (2006) Fuel ethanol production from corn stover, optimization of steam pretreatment and improvement of simultaneous saccharification and fermentation. Lund University, Lund, Sweden

    Google Scholar 

  90. Shevchenko SM, Chang K, Robinson J, Saddler JN (2000) Bioresource Technol 72:207

    Article  CAS  Google Scholar 

  91. Grethlein HE, Converse AO (1991) Bioresource Technol 36:77

    Article  CAS  Google Scholar 

  92. Varga E, Reczey K, Zacchi G (2004) Appl Biochem Biotechnol 120:113

    Google Scholar 

  93. Fernandez-Bolanos J, Felizon B, Heredia A, Rodriguez R, Guillen R, Jimenez A (2001) Biores Technol 79:53

    Article  CAS  Google Scholar 

  94. Wu MM, Chang K, Gregg DJ, Boussaid A et al. (1999) Appl Biochem Biotech 77–79:47

    Article  Google Scholar 

  95. Ewanick SM (2006) Bioconversion of mountain pine beetle-killed lodgepole pine to ethanol. MSc Thesis, University of British Columbia, Vancouver, Canada

    Google Scholar 

  96. Berlin A, Gilkes N, Kilburn D, Bura R et al. (2005) Enzyme Microb Tech 37:175

    Article  CAS  Google Scholar 

  97. Berlin A, Gilkes N, Kilburn D, Maximenko V et al. (2006) Appl Biochem Biotechnol 129–132:528

    Article  Google Scholar 

  98. Edgar CD, Mansfield SD, Gubitz GM, Saddler JN (1998) In: Eriksson KEL, Cavaco-Paulo A (eds) Enzyme applications in fiber processing. ACS symposium series 687. Washington DC, USA

    Google Scholar 

  99. Mansfield SD, de Jong E, Stephens RS, Saddler JN (1997) J Biotechnol 57:205

    Article  CAS  Google Scholar 

  100. Maiti B, Whitmore D (1997) Chem Eng Commun 162:169

    Article  CAS  Google Scholar 

  101. Pommier J, Fuentes JL, Goma G (1989) Tappi J 72:187

    CAS  Google Scholar 

  102. Kibblewhite RP (1977) Tappi J 60:141–143

    Google Scholar 

  103. Page DH, Seth RS (1980) Tappi J 63:99–101

    Google Scholar 

  104. Ramos LP, Breuil C, Saddler JN (1993) Enzyme Microb Tech 15:821

    Article  CAS  Google Scholar 

  105. Nahzad MM, Ramos LP, Paszner L, Saddler JN (1995) Enzyme Microb Tech 17:68

    Article  Google Scholar 

  106. Laivins GV, Scallan AM (1993) The mechanism of hornification of wood pulps. In: Baker CF (ed) Products of papermaking, transactions of the 10th fundamental research symposium. Pira International, Oxford, UK

    Google Scholar 

  107. Hopner T, Jayme G, Ulrich JC (1955) Das Papier 9:476

    CAS  Google Scholar 

  108. Oksanen T, Pere J, Paavlainen L, Buchert J, Viikari L (2000) J Biotechnol 78:39

    Article  CAS  Google Scholar 

  109. Stone JE, Scallan AM, Donefer E, Ahlgren E (1969) Adv Chem Ser 95:219

    Article  CAS  Google Scholar 

  110. Wong KY, Deverell KF, Mackie KL, Clark TA (1988) Biotechnol Bioeng 31:447

    Article  CAS  Google Scholar 

  111. Weimer PJ, Weston WJ (1985) Biotechnol Bioeng 27:1540

    Article  CAS  Google Scholar 

  112. Esteghlalian AR, Bilodeau M, Mansfield SD, Saddler JN (2001) Biotechnol Progr 17:1049

    Article  CAS  Google Scholar 

  113. Puri VP (1984) Biotechnol Bioeng 26:1219

    Article  CAS  Google Scholar 

  114. Bertram MS, Dale BE (1985) Biotechnol Bioeng 27:177–181

    Article  Google Scholar 

  115. Pu Y, Ziemer C, Ragauskas AJ (2006) Carbohyd Res 341:591

    Article  CAS  Google Scholar 

  116. Fan LT, Lee YH, Beardmore DH (1980) Biotechnol Bioeng 22:177

    Article  CAS  Google Scholar 

  117. Fan LT, Lee YH, Beardmore DH (1981) Biotechnol Bioeng 23:419

    Article  CAS  Google Scholar 

  118. Beardmore DH, Fan LT, Lee YH (1980) Biotechnol Lett 2:435

    Article  CAS  Google Scholar 

  119. Gharpuray MM, Fan LT, Lee YH (1983) Biotechnol Bioeng 25:157

    Article  CAS  Google Scholar 

  120. Converse AO (1993) Substrate factors limiting enzymatic hydrolysis. In: Saddler JN (ed) Bioconversion of forest and agricultural plant residues. CAB International, Wollingford, UK

    Google Scholar 

  121. Maloney T, Rantanen J, Paulapuro H, Yliruusi J (2003) Pharm Res 18:1562

    Google Scholar 

  122. OpTest Equipment (1999) HiRes fiber quality analyzer-user manual. OpTest, Washington DC, USA

    Google Scholar 

  123. Gardner PT, Wood TJ, Chesson A, Stuchbury T (1999) J Sci Food Agric 79:18

    Google Scholar 

  124. Meunier-Goddik L, Bothwell M, Sangseethong K, Piyachomkwan K, Chung YC, Thammasouk K, Tanjo D, Penner MH (1999) Enzyme Microb Tech 24:664

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. N. Saddler .

Editor information

Lisbeth Olsson

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Chandra, R.P., Bura, R., Mabee, W.E., Berlin, A., Pan, X., Saddler, J.N. (2007). Substrate Pretreatment: The Key to Effective Enzymatic Hydrolysis of Lignocellulosics? . In: Olsson, L. (eds) Biofuels. Advances in Biochemical Engineering/Biotechnology, vol 108. Springer, Berlin, Heidelberg. https://doi.org/10.1007/10_2007_064

Download citation

Publish with us

Policies and ethics