Skip to main content
Log in

Adsorption of Ag (I) from aqueous solution by waste yeast: kinetic, equilibrium and mechanism studies

  • Original Paper
  • Published:
Bioprocess and Biosystems Engineering Aims and scope Submit manuscript

Abstract

One type of biosorbents, brewer fermentation industry waste yeast, was developed to adsorb the Ag (I) in aqueous solution. The result of FTIR analysis of waste yeast indicated that the ion exchange, chelating and reduction were the main binding mechanisms between the silver ions and the binding sites on the surface of the biomass. Furthermore, TEM, XRD and XPS results suggested that Ag0 nanoparticles were deposited on the surface of yeast. The kinetic experiments revealed that sorption equilibrium could reach within 60 min, and the removal efficiency of Ag (I) could be still over 93 % when the initial concentration of Ag (I) was below 100 mg/L. Thermodynamic parameters of the adsorption process (ΔG, ΔH and ΔS) identified that the adsorption was a spontaneous and exothermic process. The waste yeast, playing a significant role in the adsorption of the silver ions, is useful to fast adsorb Ag (I) from low concentration.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Scheme 1

Similar content being viewed by others

References

  1. Wang Y, Ma X, Li Y, Li X, Yang L, Ji L, He Y (2012) Preparation of a novel chelating resin containing amidoxime–guanidine group and its recovery properties for silver ions in aqueous solution. Chem Eng J 209:394–400. doi:10.1016/j.cej.2012.07.143

    Article  CAS  Google Scholar 

  2. Sarı A, Tüzen M (2013) Adsorption of silver from aqueous solution onto raw vermiculite and manganese oxide-modified vermiculite. Microporous Mesoporous Mater 170:155–163. doi:10.1016/j.micromeso.2012.12.004

    Article  Google Scholar 

  3. Das N (2010) Recovery of precious metals through biosorption—A review. Hydrometallurgy 103(1–4):180–189. doi:10.1016/j.hydromet.2010.03.016

    Article  CAS  Google Scholar 

  4. Sun C, Li C, Qu R, Zhang Y, Bingdong Z, Kuang Y (2014) Syntheses of diethylenetriamine-bridged polysilsesquioxanes and their structure–adsorption properties for Hg(II) and Ag(I). Chem Eng J 240:369–378. doi:10.1016/j.cej.2013.11.092

    Article  CAS  Google Scholar 

  5. Huo H, Su H, Tan T (2009) Adsorption of Ag + by a surface molecular-imprinted biosorbent. Chem Eng J 150(1):139–144. doi:10.1016/j.cej.2008.12.014

    Article  CAS  Google Scholar 

  6. Wang Y, Gao H, Sun J, Li J, Su Y, Ji Y, Gong C (2011) Selective reinforced competitive biosorption of Ag (I) and Cu (II) on Magnetospirillum gryphiswaldense. Desalination 270(1–3):258–263. doi:10.1016/j.desal.2010.11.053

    Article  CAS  Google Scholar 

  7. Huang L, Sun Y, Yang T, Li L (2011) Adsorption behavior of Ni (II) on lotus stalks derived active carbon by phosphoric acid activation. Desalination 268(1–3):12–19. doi:10.1016/j.desal.2010.09.044

    Article  CAS  Google Scholar 

  8. Atia AA (2005) Adsorption of silver(I) and gold(III) on resins derived from bisthiourea and application to retrieval of silver ions from processed photo films. Hydrometallurgy 80(1–2):98–106. doi:10.1016/j.hydromet.2005.07.004

    Article  CAS  Google Scholar 

  9. Donia AM, Atia AA, Elwakeel KZ (2007) Recovery of gold(III) and silver(I) on a chemically modified chitosan with magnetic properties. Hydrometallurgy 87(3–4):197–206. doi:10.1016/j.hydromet.2007.03.007

    Article  CAS  Google Scholar 

  10. Lin Z, Zhou C, Wu J, Zhou J, Wang L (2005) A further insight into the mechanism of Ag + biosorption by Lactobacillus sp. strain A09. Spectrochim Acta A Mol Biomol Spectrosc 61(6):1195–1200. doi:10.1016/j.saa.2004.06.041

    Article  Google Scholar 

  11. Tian L, Wang H, Zhang Y, Sun X, Yuang L (2007) Comprehensive utilization of beer waste in the brewage process. Agr Prod Resour 05:36–42

    Google Scholar 

  12. Singleton I, Simmons P (1996) Factors affecting silver biosorption by an industrial strain of Saccharomyces cerevisiae. J Chem Technol Biotechnol 65(1):21–28

    Article  CAS  Google Scholar 

  13. Simmons P, Singleton I (1996) A method to increase silver biosorption by an industrial strain of Saccharomyces cerevisiae. Appl Microbiol Biotechnol 45(1–2):278–285

    Article  CAS  Google Scholar 

  14. Yurtsever M, Şengl A (2012) Adsorption and desorption behavior of silver ions onto valonia tannin resin. Trans Nonferrous Met Soc China 22(11):2846–2854. doi:10.1016/s1003-6326(11)61541-0

    Article  CAS  Google Scholar 

  15. Pehlivan E, Altun T, Parlayici S (2012) Modified barley straw as a potential biosorbent for removal of copper ions from aqueous solution. Food Chem 135(4):2229–2234. doi:10.1016/j.foodchem.2012.07.017

    Article  CAS  Google Scholar 

  16. Puigdomenech I (2002) MEDUSA (make equilibrium diagrams using sophisticated algorithms), vol. 3.1

  17. Cai J, Cui L, Wang Y, Liu C (2009) Effect of functional groups on sludge for biosorption of reactive dyes. J Environ Sci 21(4):534–538. doi:10.1016/s1001-0742(08)62304-9

    Article  CAS  Google Scholar 

  18. Abd El-Ghaffar MA, Abdel-Wahab ZH, Elwakeel KZ (2009) Extraction and separation studies of silver(I) and copper(II) from their aqueous solution using chemically modified melamine resins. Hydrometallurgy 96(1–2):27–34. doi:10.1016/j.hydromet.2008.07.008

    Article  CAS  Google Scholar 

  19. Jia Y, Demopoulos GP (2003) Adsorption of silver onto activated carbon from acidic media: nitrate and sulfate media. Ind Eng Chem Res 42(1):72–79

    Article  CAS  Google Scholar 

  20. Adani KG, Barley RW, Pascoe RD (2005) Silver recovery from synthetic photographic and medical X-ray process effluents using activated carbon. Miner Eng 18(13–14):1269–1276. doi:10.1016/j.mineng.2005.05.021

    Article  CAS  Google Scholar 

  21. Atia AA (2005) Adsorption of silver (I) and gold (III) on resins derived from bisthiourea and application to retrieval of silver ions from processed photo films. Hydrometallurgy 80(1):98–106

    Article  CAS  Google Scholar 

  22. Donia AM, Atia AA, Elwakeel KZ (2007) Recovery of gold (III) and silver (I) on a chemically modified chitosan with magnetic properties. Hydrometallurgy 87(3):197–206

    Article  CAS  Google Scholar 

  23. Wang L, Xing R, Liu S, Yu H, Qin Y, Li K, Feng J, Li R, Li P (2010) Recovery of silver (I) using a thiourea-modified chitosan resin. J Hazard Mater 180(1–3):577–582. doi:10.1016/j.jhazmat.2010.04.072

    Article  CAS  Google Scholar 

  24. Safarik I, Rego LFT, Borovska M, Mosiniewicz-Szablewska E, Weyda F, Safarikova M (2007) New magnetically responsive yeast-based biosorbent for the efficient removal of water-soluble dyes. Enzym Microb Technol 40(6):1551–1556. doi:10.1016/j.enzmictec.2006.10.034

    Article  CAS  Google Scholar 

  25. Cui L, Wu G, Deng K, Won SW, Yun Y (2006) Application of RR 4 biosorption models. Fresen Environ Bull 15(11):1442–1446

    CAS  Google Scholar 

  26. Cui L, Liu C, Wu G (2008) Performance and mechanism of methylene blue biosorption on orange peel. Environ Technol 29(9):1021–1030

    Article  Google Scholar 

  27. Song X, Gunawan P, Jiang R, Leong SSJ, Wang K, Xu R (2011) Surface activated carbon nanospheres for fast adsorption of silver ions from aqueous solutions. J Hazard Mater 194:162–168. doi:10.1016/j.jhazmat.2011.07.076

    Article  CAS  Google Scholar 

  28. Das D, Das N, Mathew L (2010) Kinetics, equilibrium and thermodynamic studies on biosorption of Ag(I) from aqueous solution by macrofungus Pleurotus platypus. J Hazard Mater 184(1–3):765–774. doi:10.1016/j.jhazmat.2010.08.105

    Article  CAS  Google Scholar 

  29. Li Y, Duan X, Qian Y, Yang L, Liao H (1999) Nanocrystalline silver particles: synthesis, agglomeration, and sputtering induced by electron beam. J Colloid Interface Sci 209(2):347–349

    Article  CAS  Google Scholar 

  30. Song JY, Kim BS (2008) Rapid biological synthesis of silver nanoparticles using plant leaf extracts. Bioprocess Biosyst Eng 32(1):79–84. doi:10.1007/s00449-008-0224-6

    Article  Google Scholar 

  31. Deng S, Ting YP (2005) Characterization of PEI-modified biomass and biosorption of Cu(II), Pb(II) and Ni(II). Water Res 39(10):2167–2177. doi:10.1016/j.watres.2005.03.033

    Article  CAS  Google Scholar 

  32. Won SW, Wu G, Ma H, Liu Q, Yan Y, Cui L, Liu C, Yun YS (2006) Adsorption performance and mechanism in binding of Reactive Red 4 by coke waste. J Hazard Mater 138(2):370–377. doi:10.1016/j.jhazmat.2006.05.060

    Article  CAS  Google Scholar 

  33. Cui L, Wu G, Jeong T-s (2010) Adsorption performance of nickel and cadmium ions onto brewer’s yeast. Can J Chem Eng 88(1):109–115. doi:10.1002/cjce.20241

    Article  CAS  Google Scholar 

  34. Li XG, Feng H, Huang MR (2010) Redox sorption and recovery of silver ions as silver nanocrystals on poly(aniline-co-5-sulfo-2-anisidine) nanosorbents. Chemistry 16(33):10113–10123. doi:10.1002/chem.201000506

    Article  CAS  Google Scholar 

  35. Luo C, Zhang Y, Zeng X, Zeng Y, Wang Y (2005) The role of poly(ethylene glycol) in the formation of silver nanoparticles. J Colloid Interface Sci 288(2):444–448. doi:10.1016/j.jcis.2005.03.005

    Article  CAS  Google Scholar 

  36. Won SW, Mao J, Kwak IS, Sathishkumar M, Yun YS (2010) Platinum recovery from ICP wastewater by a combined method of biosorption and incineration. Bioresour Technol 101(4):1135–1140. doi:10.1016/j.biortech.2009.09.056

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was sponsored by the Scientific Research Foundation for the Returned Overseas Chinese Scholars, State Education Ministry.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guiping Wu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhao, Y., Wang, D., Xie, H. et al. Adsorption of Ag (I) from aqueous solution by waste yeast: kinetic, equilibrium and mechanism studies. Bioprocess Biosyst Eng 38, 69–77 (2015). https://doi.org/10.1007/s00449-014-1244-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00449-014-1244-z

Keywords

Navigation