Skip to main content

Advertisement

Log in

Probabilistic eruption forecasting at short and long time scales

  • Review Article
  • Published:
Bulletin of Volcanology Aims and scope Submit manuscript

Abstract

Any effective volcanic risk mitigation strategy requires a scientific assessment of the future evolution of a volcanic system and its eruptive behavior. Some consider the onus should be on volcanologists to provide simple but emphatic deterministic forecasts. This traditional way of thinking, however, does not deal with the implications of inherent uncertainties, both aleatoric and epistemic, that are inevitably present in observations, monitoring data, and interpretation of any natural system. In contrast to deterministic predictions, probabilistic eruption forecasting attempts to quantify these inherent uncertainties utilizing all available information to the extent that it can be relied upon and is informative. As with many other natural hazards, probabilistic eruption forecasting is becoming established as the primary scientific basis for planning rational risk mitigation actions: at short-term (hours to weeks or months), it allows decision-makers to prioritize actions in a crisis; and at long-term (years to decades), it is the basic component for land use and emergency planning. Probabilistic eruption forecasting consists of estimating the probability of an eruption event and where it sits in a complex multidimensional time–space–magnitude framework. In this review, we discuss the key developments and features of models that have been used to address the problem.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Akaike H (1977) On entropy maximization principle. In: Krishnaiah PR (ed) Applications of statistics. North-Holland, Amsterdam, pp 27–41

    Google Scholar 

  • Amoruso A, Crescentini L (2009) Shape and volume change of pressurized ellipsoidal cavities from deformation and seismic data. J Geophys Res 114:B02210

    Article  Google Scholar 

  • Amoruso A, Crescentini L (2011) Modelling deformation due to a pressurized ellipsoidal cavity, with reference to the Campi Flegrei caldera, Italy. Geophys Res Lett 38:L01303

    Article  Google Scholar 

  • Amoruso A, Crescentini L, Berrino G (2008) Simultaneous inversion of deformation and gravity changes in a horizontally layered half-space: evidences for magma intrusion during the 1982–1984 unrest at Campi Flegrei caldera (Italy). Earth Plan Sci Lett 272:181–188

    Article  Google Scholar 

  • Aspinall W (2006) Structured elicitation of expert judgement for probabilistic hazard and risk assessment in volcanic eruptions. In: Mader HM, Coles SG, Connor CB, Connor LJ (eds) Statistics in volcanology. IAVCEI Publications. ISBN 978-1-86239-208-3, pp 15–30

  • Aspinall WP, Woo G, Voight B, Baxter PJ (2003) Evidence-based volcanology: application to eruption crises. J Volcanol Geotherm Res 128:273–285

    Article  Google Scholar 

  • Aspinall W, Carniel R, Jaquet O, Woo G, Hincks T (2006) Using hidden multi-state Markov models with multi-parameter volcanic data to provide empirical evidence for alert level decision-support. J Volcanol Geotherm Res 153:112–124

    Article  Google Scholar 

  • Bak P, Tang C, Wiesenfeld K (1987) Self-organized criticality: an explanation of the 1/f noise. Phys Rev Lett 59:381–384

    Article  Google Scholar 

  • Battaglia M, Hill DP (2009) Analytical modeling of gravity changes and crustal deformation at volcanoes: the Long Valley caldera, California, case study. Tectonophysics 471:45–57

    Article  Google Scholar 

  • Battaglia M, Roberts C, Segall P (2003) The mechanics of unrest at Long Valley caldera, California: 2. Constraining the nature of the source using geodetic and micro-gravity data. J Volcanol Geotherm Res 127:219–245

    Article  Google Scholar 

  • Battaglia J, Ferrazzini V, Staudacher T, Aki K, Cheminee J (2005) Pre-eruptive migration of earthquakes at the Piton de la Fournaise volcano (Reunion Island). Geophys J Int 161:549–558

    Article  Google Scholar 

  • Bebbington MS (2007) Identifying volcanic regimes using hidden Markov models. Geophys J Int 171:921–942

    Article  Google Scholar 

  • Bebbington M (2008) Incorporating the eruptive history in a stochastic model for volcanic eruptions. J Volcanol Geotherm Res 175:325–333

    Article  Google Scholar 

  • Bebbington M (2009) Volcanic eruptions: stochastic models of occurrence patterns. In: Meyers B (ed) Encyclopedia of complexity and system science, vol 9. Springer, New York, pp 9831–9861

    Google Scholar 

  • Bebbington M (2010) Trends and clustering in the onsets of volcanic eruptions. J Geophys Res 115:B01203

    Article  Google Scholar 

  • Bebbington M, Cronin SJ (2011) Spatio-temporal hazard estimation in the Auckland Volcanic Field, New Zealand, with a new event-order model. Bull Volcanol 73:55–72

    Article  Google Scholar 

  • Bebbington M, Harte D (2001) On the statistics of the linked stress release process. J Appl Probab 38A:176–187

    Article  Google Scholar 

  • Bebbington MS, Lai CD (1996a) On nonhomogeneous models for volcanic eruptions. Math Geol 28:585–600

    Article  Google Scholar 

  • Bebbington MS, Lai CD (1996b) Statistical analysis of New Zealand volcanic occurrence data. J Volcanol Geotherm Res 74:101–110

    Article  Google Scholar 

  • Bebbington MS, Lai CD (1998) A generalised negative binomial and applications. Commun Stat, Theory Methods 27:2515–2533

    Article  Google Scholar 

  • Bebbington MS, Marzocchi, W (2011) Stochastic models for earthquake triggering of volcanic eruptions. J Geophys Res 116:B05204

    Article  Google Scholar 

  • Bebbington M, Cronin S, Chapman I, Turner M (2008) Quantifying volcanic ash fall hazard to electricity infrastructure. J Volcanol Geotherm Res 177:1055–1062

    Article  Google Scholar 

  • Bedford T, Cooke R (2001) Probabilistic risk analysis: foundations and methods. Cambridge University Press, Cambridge

    Book  Google Scholar 

  • Bell A, Naylor M, Heap M, Main I (2011) Forecasting volcanic eruptions and other material failure phenomena: an evaluation of the failure forecast method. Geophys Res Lett 38:L15304

    Article  Google Scholar 

  • Benoit JP, McNutt SR, Barboza V (2003) Duration-amplitude distribution of volcanic tremor. J Geophys Res 108:2146

    Article  Google Scholar 

  • Bommer J, Scherbaum F (2008) The use and misuse of logic trees in probabilistic seismic hazard analysis. Earthq Spectra 24:9970–1009

    Article  Google Scholar 

  • Bonaccorso A, Aloisi M, Mattia M (2002) Dike emplacement forerunning the Etna July 2001 eruption modeled through continuous tilt and GPS data. Geophys Res Lett 29:1624

    Article  Google Scholar 

  • Bonafede M (1991) Hot fluid migration: an efficient source of ground deformation—application to the 1982–84 crisis at Phlegraean Fields, Italy. J Volcanol Geotherm Res 48:187–198

    Article  Google Scholar 

  • Brenguier F, Shapiro N, Campillo M, Ferrazzini V, Duputel Z, Coutant O, Nercessian A (2008) Towards forecasting volcanic eruptions using seismic noise. Nat Geosci 1:126–130

    Article  Google Scholar 

  • Bryan CJ, Sherburn S (2003) Eruption-induced modifications to volcanic seismicity at Ruapehu, New Zealand, and its implications for eruption forecasting. Bull Volcanol 65:30–42

    Google Scholar 

  • Budnitz RJ, Apostolakis G, Boore DM, Cluff LS, Coppersmith KJ, Cornell CA, Morris PA (1997) Senior Seismic Hazard Analysis Committee; recommendations for probabilistic seismic hazard analysis: guidance on uncertainty and use of experts, vol 1–2. U.S. Nuclear Regulatory Commission, U.S. Dept. of Energy, Electric Power Research Institute; NUREG/CR-6372, UCRL-ID-122160

  • Burt ML, Wadge G, Curnow RN (2001) An objective method for mapping hazardous flow deposits from the stratigraphic record of stratovolcanoes: a case example from Montange Pelée. Bull Volcanol 63:98–111

    Article  Google Scholar 

  • Burt ML, Wadge G, Scott WA (1994) Simple stochastic modelling of the eruption history of a basaltic volcano: Nyamuragira, Zaire. Bull Volcanol 56:87–97

    Google Scholar 

  • Caniaux G (2005) Statistical analysis of the volcanic eruption frequency in the Azores Islands: a contribution to risk assessment. Bull Soc Géol Fr 176:107–120

    Google Scholar 

  • Carta S, Figari R, Sartoris G, Sassi R, Scandone R (1981) A statistical model for Vesuvius and its volcanological implications. Bull Volcanol 44:129–151

    Article  Google Scholar 

  • Castro JM, Dingwell DB (2009) Rapid ascent of rhyolitic magma at Chaitén volcano, Chile. Nature 461:780–784

    Article  Google Scholar 

  • Chastin SFM, Main IG (2003) Statistical analysis of daily seismic event rate as a precursor to volcanic eruptions. Geophys Res Lett 30:1671

    Article  Google Scholar 

  • Chouet B (1996) Long-period volcano seismicity: its source and use in eruption forecasting. Nature 380:309–316

    Article  Google Scholar 

  • Claeskens G, Hjort NL (2008) Model selection and model averaging. Cambridge University Press, Cambridge

    Book  Google Scholar 

  • Condit CD, Connor CB (1996) Recurrence rates of volcanism in basaltic volcanic fields: an example from the Springerville volcanic field, Arizona. Geol Soc Am Bull 108:1225–1241

    Article  Google Scholar 

  • Connor CB, Connor LJ (2009) Estimating spatial density with kernel methods. In: Connor CB, Chapman NA, Connor LJ (eds) Volcanic and tectonic hazard assessment for nuclear facilities. Cambridge University Press, Cambridge, UK, pp 346–368

    Chapter  Google Scholar 

  • Connor CB, Hill BE (1995) Three nonhomogeneous Poisson models for the probability of basaltic volcanism: application to the Yucca Mountain region, Nevada. J Geophys Res 100:10107–10125

    Article  Google Scholar 

  • Connor CB, Stamatakos JA, Ferrill DA, Hill BE, Ofoegbu G, Conway FM, Sagar B, Trapp JS (2000) Geologic factors controlling patterns of small-volume basaltic volcanism: application to a volcanic hazards assessment at Yucca Mountain, Nevada. J Geophys Res 105:417–432

    Article  Google Scholar 

  • Connor CB, Sparks RSJ, Mason RM, Bonadonna C, Young SR (2003) Exploring links between physical and probabilistic models of volcanic eruptions: the Soufriere Hills volcano, Montserrat. Geophys Res Lett 30:1701

    Article  Google Scholar 

  • Conway FM, Connor CB, Hill BE, Condit CD, Mullaney K, Hall CM (1998) Recurrence rates of basaltic volcanism in SP cluster, San Francisco volcanic field, Arizona. Geology 26:655–658

    Article  Google Scholar 

  • Cooke RM (1991) Experts in uncertainty: opinion and subjective probability in science. Oxford Univ Press, Oxford

    Google Scholar 

  • Cornelius RR, Voight B (1996) Real-time seismic amplitude measurement (RSAM) and seismic spectral amplitude measurement (SSAM) analyses with the materials failure forecast method (FFM), June 1991 explosive eruption at Mount Pinatubo. In: Newhall CG, Punongbayan RS (eds) Fire and mud, eruptions and lahars of Mount Pinatubo Philippines, pp 249–267

  • Cox DR, Lewis PAW (1966) The statistical analysis of series of events. Methuen, London

    Google Scholar 

  • Cronin S, Bebbington M, Lai CD (2001) A probabilistic assessment of eruption recurrence on Taveuni volcano, Fiji. Bull Volcanol 63:274–288

    Article  Google Scholar 

  • Crowe BM, Johnson ME, Beckman RJ (1982) Calculation of the probability of volcanic disruption of a high-level radioactive waste repository within southern Nevada, USA. Radioact Waste Manage 3:167–190

    Google Scholar 

  • Crowe BM, Wallmann P, Bowker LM (1998) Probabilistic modeling of volcanism data: Final volcanic hazard studies for the Yucca Mountain site. In: Perry FV et al (eds) Volcanism studies: final report for the Yucca Mountain project. Los Alamos National Laboratory Report LA-13478, Los Alamos National Laboratory, Los Alamos, NM, p 415

  • Davis PM (1986) Surface deformation due to inflation of an arbitrarily oriented triaxial ellipsoidal cavity in an elastic half-space, with reference to Kilauea Volcano, Hawaii. J Geophys Res 91:7429–7438

    Article  Google Scholar 

  • Decker RW (1986) Forecasting volcanic eruptions. Ann Rev Earth Planet Sci 14:267–291

    Article  Google Scholar 

  • De la Cruz-Reyna S (1991) Poisson-distributed patterns of explosive eruptive activity. Bull Volcanol 54:57–67

    Article  Google Scholar 

  • De la Cruz-Reyna S (1993) Random patterns of occurrence of explosive eruptions at Colima volcano, Mexico. J Volcanol Geotherm Res 55:51–68

    Article  Google Scholar 

  • De la Cruz-Reyna S, Carrasco-Nunez G (2002) Probabilistic hazard analysis of Citlaltepetl (Pico de Orizaba) volcano, eastern Mexican volcanic belt. J Volcanol Geotherm Res 113:307–318

    Article  Google Scholar 

  • Deligne NI, Coles SG, Sparks RSJ (2010) Recurrence rates of large explosive volcanic eruptions. J Geophys Res 115:B06203. doi:10.1029/2009JB006554

    Article  Google Scholar 

  • Duong T (2007) ks: kernel density estimations and kernel discriminant analysis for multivariate data in R. J Statist Softw 21(7):1–16

    Google Scholar 

  • Dzierma Y, Wehrmann H (2010) Eruption time series statistically examined: Probabilities of future eruptions at Villarrica and Llaima Volcanoes, Southern Volcanic Zone, Chile. J Volcanol Geotherm Res 193:82–92

    Article  Google Scholar 

  • Dzurisin D (2003) A comprehensive approach to monitoring volcano deformation as a window on the eruption cycle. Rev Geophys 41:1001

    Article  Google Scholar 

  • Eliasson J, Larsen G, Gudmundsson MT, Sigmundsson F (2006) Probabilistic model for eruptions and associated flood events in the Katla caldera, Iceland. Comput Geosci 10:179–200

    Article  Google Scholar 

  • Field EH, Dawson TE, Felzer KR, Frankel AD, Gupta V, Jordan TH, Parsons T, Petersen MD, Stein RS, Weldon RJ, Wills CJ (2007) The uniform California earthquake rupture forecast, Version 2 (UCERF 2). USGS Open File Report 2007–1437

  • Fournier T J, Pritchard ME, Riddick SN (2010) Duration, magnitude, and frequency of subaerial volcano deformation events: new results from Latin America using InSAR and a global synthesis. Geochem Geophys Geosyst 11:Q01003

    Article  Google Scholar 

  • Furlan, C (2010) Extreme value methods for modelling historical series of large volcanic magnitudes. Statist Model 10:113–132

    Article  Google Scholar 

  • Garcia-Aristizabal A, Marzocchi W, Fujita E (2012) A Brownian model for recurrent volcanic eruptions: an application to Miyakejima volcano (Japan). Bull Volcanol 74:545–558

    Article  Google Scholar 

  • Gelman A, Carlin JB, Stern HS, Rubin DB (1995) Bayesian data analysis. CRC, Boca Raton, FL

    Google Scholar 

  • Gerst A, Savage M (2004) Seismic anisotropy beneath Ruapehu Volcano: a possible eruption forecasting tool. Science 306:1543–1547

    Article  Google Scholar 

  • Gillies D (2000) Philosophical theories of probability. New York, Routledge

    Google Scholar 

  • Grasso JR, Zaliapin I (2004) Predictability of volcano eruption: Lessons from a basaltic effusive volcano. Geophys Res Lett 31:L05602

    Article  Google Scholar 

  • Guidoboni E, Ciuccarelli C (2011) The Campi Flegrei caldera: historical revision and new data on seismic crises, bradyseisms, the Monte Nuovo eruption and ensuing earthquakes (twelfth century 1582 AD). Bull Volcanol 73:655–677

    Article  Google Scholar 

  • Guttorp P, Thompson ML (1991) Estimating second-order parameters of volcanicity from historical data. J Am Statist Assoc 86:578–583

    Article  Google Scholar 

  • Hainzl S, Ogata Y (2005) Detecting fluid signals in seismicity data through statistical earthquake modeling. J Geophys Res 110:B05S07

    Article  Google Scholar 

  • Hammer C, Neuberg J (2009) On the dynamical behavior of low-frequency earthquake swarms prior to a dome collapse of Soufrière Hill volcano, Montserrat. Geophys Res Lett 36:L06305

    Article  Google Scholar 

  • Hill BE, Connor CB, Jarzemba MS, La Femina PC, Navarro M, Strauch W (1998) 1995 eruptions of Cerro Negro volcano, Nicaragua, and risk assessment for future eruptions. Geol Soc Am Bull 110:1231–1241

    Article  Google Scholar 

  • Ho CH (1990) Bayesian analysis of volcanic eruptions. J Volcanol Geotherm Res 43:91–98

    Article  Google Scholar 

  • Ho CH (1991) Nonhomogeneous Poisson model for volcanic eruptions. Math Geol 23:167–173

    Article  Google Scholar 

  • Ho CH (1992) Statistical control chart for regime identification in volcanic time-series. Math Geol 24:775–787

    Article  Google Scholar 

  • Hurvich CM, Tsai CL (1989) Regression and time series model selection in small samples. Biometrika 76:297–307

    Article  Google Scholar 

  • Iguchi M, Yakiwara H, Tameguri T, Hendrasto M, Hirabayashi JI (2008) Mechanism of explosive eruption revealed by geophysical observations at the Sakurajima, Suwanosejima and Semeru volcanoes. J Volcanol Geotherm Res 178:1–9

    Article  Google Scholar 

  • Jaquet O, Carniel R (2001) Stochastic modelling at Stromboli: a volcano with remarkable memory. J Volcanol Geotherm Res 105:249–262

    Article  Google Scholar 

  • Jaquet O, Low S, Martinelli B, Dietrich V, Gilby D (2000) Estimation of volcanic hazards based on Cox stochastic processes. Phys Chem Earth (A) 25:571–579

    Article  Google Scholar 

  • Jaquet O, Carniel R, Sparks S, Thompson G, Namar R, Dicecca M (2006) DEVIN: a forecasting approach using stochastic methods applied to the Soufriere Hills Volcano. J Volcanol Geotherm Res 153:97–111

    Article  Google Scholar 

  • Jellinek AM, Bercovici D (2011) Seismic tremors and magma wagging during explosive volcanism. Nature 470:522–526. doi:10.1038/nature09828

    Article  Google Scholar 

  • Jeffreys H (1961) Theory of probability, 3rd edn. Oxford University Press, Oxford

    Google Scholar 

  • Jiang R, Murthy DNP (1998) Mixture of Weibull distributions—parametric characterization of failure rate function. Appl Stoc Models Data Anal 14:47–65

    Article  Google Scholar 

  • Jordan TH (2006) Earthquake predictability, brick by brick. Seismol Res Lett 77:3–6

    Article  Google Scholar 

  • Jordan TH, Chen Y-T, Gasparini P, Madariaga R, Main I, Marzocchi W, Papadopoulos G, Sobolev G, Yamaoka K, Zschau J (2011) Operational earthquake forecasting: state of knowledge and guidelines for implementation. Ann Geophys 54:315–391. doi:10.4401/ag-5350

    Google Scholar 

  • Kiyosugi K, Connor CB, Zhao D, Connor LJ, Tanaka K (2010) Relationships between volcano distribution, crustal structure, and P-wave tomography: an example from the Abu Monogenetic Volcano Group, SW Japan. Bull Volcanol 72:331–340

    Article  Google Scholar 

  • Klein FW (1982) Patterns of historical eruptions at Hawaiian volcanoes. J Volcanol Geotherm Res 12:1–35

    Article  Google Scholar 

  • Kilburn C (2003) Multiscale fracturing as a key to forecasting volcanic eruptions. J Volcanol Geotherm Res 125:271–289

    Article  Google Scholar 

  • Kilburn CRJ, Voight B (1998) Slow rock fracture as eruption precursor at Soufriere Hills volcano, Montserrat. Geophys Res Lett 25:3665–3668

    Article  Google Scholar 

  • Lavallée Y, Meredith P, Dingwell D, Hess K, Wassermann J, Cordonnier B, Gerik A, Kruhl J (2008) Seismogenic lavas and explosive eruption forecasting. Nature 453:507–510

    Article  Google Scholar 

  • Linde AT, Ágústsson K, Sacks IS, Stefánsson R (1993) Mechanism of the 1991 eruption of Hekla from continuous borehole strain monitoring. Nature 365:737–740

    Article  Google Scholar 

  • Lindsay J, Marzocchi W, Jolly G, Constantinescu R, Selva J, Sandri L (2010) Towards real-time eruption forecasting in the Auckland Volcanic Field: application of BET_EF during the New Zealand national disaster exercise ‘Ruaumoko’. Bull Volcanol 72:185–204

    Article  Google Scholar 

  • Lombardi AM, Marzocchi W, Selva J (2006) Exploring the evolution of a volcanic seismic swarm: the case of the 2000 Izu Islands swarm. Geophys Res Lett 33:L07310

    Article  Google Scholar 

  • Luhr JF, Carmichael ISE (1990) Petrological modeling of cyclical eruptive activity at Volcan Colima, Mexico. J Volcanol Geotherm Res 42:235–260

    Article  Google Scholar 

  • Lutz TM (1986) An analysis of the orientation of large-scale crustal structures: a statistical approach based on areal distributions of pointlike features. J Geophys Res 91:421–434

    Article  Google Scholar 

  • Lutz TM, Gutmann JT (1995) An improved method for determining and characterizing alignments of point-like features and its implications for the Pinacate volcanic field, Sonora, Mexico. J Geophys Res 100:17659–17670

    Article  Google Scholar 

  • Magill CR, McAneney KJ, Smith IEM (2005) Probabilistic assessment of vent locations for the next Auckland volcanic field event. Math Geol 37:227–242

    Article  Google Scholar 

  • Manga M, Brodsky, E (2006) Seismic triggering of eruptions in the far field: volcanoes and geysers. Ann Rev Earth Planet Sci 34:263–291

    Article  Google Scholar 

  • Marti J, Aspinall WP, Sobradelo R, Felpeto A, Geyer A, Ortiz R, Baxter P, Cole P, Pacheco J, Blanco MJ, Lopez C (2008) A long-term volcanic hazard event tree for Teide-Pico Viejo stratovolcanoes (Tenerife, Canary Islands). J Volcanol Geoth Res 178:543–552

    Article  Google Scholar 

  • Martin AJ, Umeda K, Connor CB, Weller JN, Zhao D, Takahashi M (2004) Modeling long-term volcanic hazards through Bayesian inference: an example from the Tohoku volcanic arc, Japan. J Geophys Res 109:B10208

    Article  Google Scholar 

  • Martin DP, Rose WI (1981) Behavioral patterns of Fuego volcano, Guatemala. J Volcanol Geotherm Res 10:67–81

    Article  Google Scholar 

  • Marzocchi W, Woo G (2007) Probabilistic eruption forecasting and the call for an evacuation. Geophys Res Lett 34:L22310

    Article  Google Scholar 

  • Marzocchi W, Woo G (2009) Principles of volcanic risk metrics: theory and the case study of Mt. Vesuvius and Campi Flegrei (Italy). J Geophys Res 114:B03213

    Article  Google Scholar 

  • Marzocchi W, Zaccarelli L (2006) A quantitative model for the time-size distribution of eruptions. J Geophys Res 111:B04204

    Article  Google Scholar 

  • Marzocchi W, Zechar JD (2011) Earthquake forecasting and earthquake prediction: different approaches for obtaining the best model. Seismol Res Lett 82:442–448

    Article  Google Scholar 

  • Marzocchi W, Mulargia F, Gonzato G (1997) Detecting low-dimensional chaos in geophysical time series. J Geophys Res 102:3195–3209

    Article  Google Scholar 

  • Marzocchi W, Sandri L, Gasparini P, Newhall C, Boschi E (2004) Quantifying probabilities of volcanic events: the example of volcanic hazard at Mt Vesuvius. J Geophys Res 109:B11201

    Article  Google Scholar 

  • Marzocchi W, Sandri L, Selva J (2008) BET_EF: a probabilistic tool for long- and short-term eruption forecasting. Bull Volcanol 70:623–632

    Article  Google Scholar 

  • Marzocchi W, Sandri L, Selva J (2010) BET_VH: a probabilistic tool for long-term volcanic hazard assessment. Bull Volcanol 72:705–716

    Article  Google Scholar 

  • Mastrolorenzo G, Petrone P, Pappalardo L, Sheridan MF (2006) The Avellino 3780 yr BP catastrophe as worst-case scenario for a future eruption at Vesuvius. Proc Natl Acad Sci USA 103:4366–4370

    Article  Google Scholar 

  • Medina Martinez F (1983) Analysis of the eruptive history of the Volcan de Colima, Mexico (1560–1980). Geofis Int 22:157–178

    Google Scholar 

  • Mendoza-Rosas AT, De la Cruz-Reyna S (2008) A statistical method liking geological and historical eruption time series for volcanic hazard estimations: application to active polygenetic volcanoes. J Volcanol Geotherm Res 176:277–290

    Article  Google Scholar 

  • Mendoza-Rosas AT, De la Cruz-Reyna S (2009) A mixture of exponentials distribution for simple and precise assessment of the volcanic hazard. Nat Hazards Earth Syst Sci 9:425–431

    Article  Google Scholar 

  • Mendoza-Rosas AT, De la Cruz-Reyna S (2010) Hazard estimates for El Chicon volcano, Chiapas, Mexico: a statistical approach for complex eruptive histories. Nat Hazards Earth Syst Sci 10:1159–1170

    Article  Google Scholar 

  • Miller V, Savage M (2001) Changes in seismic anisotropy after volcanic eruptions: evidence from Mount Ruapehu. Science 293:2231–2233

    Article  Google Scholar 

  • Mogi K (1958) Relations between the eruptions of various volcanoes and the deformations of the ground surface around them. Bull Earthq Res Inst Univ Tokyo 36:99–134

    Google Scholar 

  • Moran SC, Newhall CG, Roman DC (2011) Failed magmatic eruptions: late-stage cessation of magma ascent. Bull Volcanol 73(2):115–122 doi:10.1007/s00445-010-0444-x

    Article  Google Scholar 

  • Mulargia F, Tinti S, Boschi E (1985) A statistical analysis of flank eruptions on Etna volcano. J Volcanol Geotherm Res 23:263–272

    Article  Google Scholar 

  • Mulargia F, Gasperini P, Tinti S (1987) Identifying regimes in eruptive activity: an application to Etna volcano. J Volcanol Geotherm Res 34:89–106

    Article  Google Scholar 

  • Mulargia F, Gasperini P, Marzocchi W (1991) Pattern recognition applied to volcanic activity: identification of the precursory patterns to Etna recent flank eruptions and periods of rest. J Volcanol Geotherm Res 45:187–196

    Article  Google Scholar 

  • Mulargia F, Marzocchi W, Gasperini P (1992) Statistical identification of physical patterns which accompany eruptive activity on Mount Etna, Sicily. J Volcanol Geotherm Res 53:289–296

    Article  Google Scholar 

  • Munoz M (1983) Eruption patterns of the Chilean volcanoes Villarrica, Llaima, and Tupungatito. Pure Appl Geophys 121:835–852

    Article  Google Scholar 

  • Neri A, Aspinall W, Cioni R, Bertagnini A, Baxter P, Zuccaro G, Andronico D, Barsotti S, Cole P, Esposti Ongaro T (2008) Developing an event tree for probabilistic hazard and risk assessment at Vesuvius. J Volcanol Geotherm Res 178:397–415

    Article  Google Scholar 

  • Neuberg J (2000) Characteristics and causes of shallow seismicity in andesite volcanoes. Philos Trans Roy Soc A 358:1533–1546

    Article  Google Scholar 

  • Neuberg JW (2011) Earthquakes, volcanogenic. In: Gupta HK (ed) Encyclopedia of solid earth geophysics, vol 1. Springer, pp 261–269

  • Newhall C, Hoblitt R (2002) Constructing event trees for volcanic crises. Bull Volcanol 64:3–20

    Article  Google Scholar 

  • Newhall CG, Self S (1982) The volcanic explosivity index (VEI): an estimate of the explosive magnitude for historical eruptions. J Geophys Res 87:1231–1238

    Article  Google Scholar 

  • Novelo-Casanova DA, Valdes-Gonzales C (2008) Seismic pattern recognition techniques to predict large eruptions at the Popocatépetl, Mexico, volcano. J Volcanol Geotherm Res 176:583–590

    Article  Google Scholar 

  • Ogata Y (1988) Statistical models for earthquake occurrences and residual analysis for point processes. J Am Statist Assoc 83:9–27

    Article  Google Scholar 

  • Ogata Y (1998) Space-time point-process models for earthquake occurrences. Ann Inst Stat Math 50:379–402

    Article  Google Scholar 

  • Orsi G, Di Vito MA, Selva J, Marzocchi W (2009) Long-term forecast of eruption style and size at Campi Flegrei caldera (Italy). Earth Plan Sci Lett 287:265–276

    Article  Google Scholar 

  • Passarelli L, Brodsky EE (2012) The correlation between run-up and repose times of volcanic eruptions. Geophys J Int 188(3):1025–1045 doi:10.1111/j.1365-246X.2011.05298.x

    Article  Google Scholar 

  • Passarelli L, Sandri L, Bonazzi A, Marzocchi W (2010a) Bayesian hierarchical time predictable model for eruption occurrence: an application to Kilauea Volcano. Geophys J Int 181:1525–1538

    Google Scholar 

  • Passarelli L, Sanso B, Sandri L, Marzocchi W (2010b) Testing forecasts of a new Bayesian time-predictable model of eruption occurrence. J Volcanol Geotherm Res 198:57–75

    Article  Google Scholar 

  • Pozgay SH, White RA, Wiens DA, Shore PJ, Sauter AW, Kaipat JL (2005) Seismicity and tilt associated with the 2003 Anatahan eruption sequence. J Volcanol Geotherm Res 146:60–76

    Article  Google Scholar 

  • Proschan F (1963) Theoretical explanation of decreasing failure rate. Technometrics 5:375–383

    Article  Google Scholar 

  • Pyle DM (1998) Forecasting sizes and repose times of future extreme volcanic events. Geology 26:367–370

    Article  Google Scholar 

  • Pyle DM (2000) Sizes of volcanic eruptions. In: Sigurdsson H et al (eds) Encyclopedia of volcanoes. Academic Press, San Diego, pp 263–269

    Google Scholar 

  • Ramos EG, Laguerta EP, Hamburger MW (1996) Seismicity and magmatic resurgence at Mount Pinatubo in 1992. In: Newhall CG, Punongbayan RS (eds) Fire and mud, eruptions and lahars of Mount Pinatubo, Philippines, pp 387–406

  • Reyment RA (1969) Statistical analysis of some volcanologic data regarded as series of point events. Pure Appl Geophys 74:57–77

    Article  Google Scholar 

  • Rodado A, Bebbington M, Noble A, Cronin S, Jolly G (2011) On selection of analogue volcanoes. Math Geosci 43:505–519

    Article  Google Scholar 

  • Roman D, Neuberg J, Luckett R (2006) Assessing the likelihood of volcanic eruption through analysis of volcanotectonic earthquake faultplane solutions. Earth Plan Sci Lett 248:229–237

    Article  Google Scholar 

  • Rosi M (1996) Quantitative reconstruction of recent volcanic activity: a contribution to fore- casting of future eruptions. In: Scarpa R, Tilling RI (eds) Monitoring and mitigation of volcano hazards. Springer, Berlin, pp 631–674

  • Salvi F, Scandone R, Palma C (2006) Statistical analysis of the historical activity of Mount Etna, aimed at the evaluation of volcanic hazard. J Volcanol Geotherm Res 154:159–168

    Article  Google Scholar 

  • Sandri L, Marzocchi W, Gasperini P (2005) Some insights on the occurrence of recent volcanic eruptions of Mount Etna volcano (Sicily, Italy). Geophys J Int 163:1203–1218

    Article  Google Scholar 

  • Sandri L, Guidoboni E, Marzocchi W, Selva J (2009) Bayesian Event Tree (BET) for eruption forecasting at Vesuvius, Italy: a retrospective forward application to 1631 eruption. Bull Volcanol 71:729–745

    Article  Google Scholar 

  • Sandri L, Jolly G, Lindsay J, Howe T, Marzocchi W (2012) Combining long- and short-term probabilistic volcanic hazard assessment with cost-benefit analysis to support decision making in a volcanic crisis from the Auckland Volcanic Field, New Zealand. Bull Volcanol 74(3):705–723 doi:10.1007/s00445-011-0556-y

    Article  Google Scholar 

  • Scandone R, Arganese G, Galdi F (1993) The evaluation of volcanic risk in the Vesuvian area. J Volcanol Geotherm Res 58:263–271

    Article  Google Scholar 

  • Selva J, Marzocchi W, Civetta L, Del Pezzo E, Papale P (2010a) Emergency preparedness: community-based short-term eruption forecasting at Campi Flegrei. EGU General Assembly 2010, held 2–7 May 2010 in Vienna, Austria, p 10318

  • Selva J, Costa A, Marzocchi W, Sandri L (2010b) BET_VH: exploring the influence of natural uncertainties on long-term hazard from tephra fallout at Campi Flegrei (Italy). Bull Volcanol 72:717–733

    Article  Google Scholar 

  • Selva J, Orsi G, Di Vito M, Marzocchi W, Sandri L (2012) Probability hazard map for future vent opening at the Campi Flegrei caldera, Italy. Bull Volcanol 74(2):497–510 doi:10.1007/s00445-011-0528-2

    Article  Google Scholar 

  • Settle M, McGetchin TR (1980) Statistical analysis of persistent explosive activity at Stromboli, 1971: Implications for eruption prediction. J Volcanol Geotherm Res 8:45–58

    Article  Google Scholar 

  • Shelly D, Hill DP (2009) Migrating swarms of brittle-failure earthquakes in the lower crust beneath Mammoth Mountain, California. Geophys Res Lett 38:L20307

    Article  Google Scholar 

  • Sigurdsson H (editor in chief) et al (2000) Encyclopedia of volcanoes. Academic Press, San Diego

    Google Scholar 

  • Simkin T, Siebert L (1994) Volcanoes of the world. Geosciences, Tucson, Ariz

    Google Scholar 

  • Smethurst L, James MR, Pinkerton H, Tawn JA (2009) A statistical analysis of eruptive activity on Mount Etna, Sicily. Geophys J Int 179:655–666

    Article  Google Scholar 

  • Smith R, Kilburn C (2010) Forecasting eruptions after long repose intervals from accelerating rates of rock fracture: the June 1991 eruption of Mount Pinatubo, Philippines. J Volcanol Geotherm Res 191:129–136

    Article  Google Scholar 

  • Sobradelo R, Marti J (2010) Bayesian event tree for long-term volcanic hazard assessment: application to Teide-Pico Viejo stratovolcanoes, Tenerife, Canary Islands. J Geophys Res 115:B05206

    Article  Google Scholar 

  • Solomon S, Qin D, Manning M, Chen Z, Marquis M, Averyt KB, Tignor M, Miller HL, eds. (2007) Climate change 2007: the physical science basis: contribution of Working Group I to the fourth assessment report of the intergovernmental panel on climate change. Cambridge and New York, Cambridge University Press

  • Solow AR (2001) An empirical Bayes analysis of volcanic eruptions. Math Geol 33:95–102

    Article  Google Scholar 

  • Sparks RSJ (2003) Forecasting volcanic eruptions. Earth Plan Sci Lett 210:1–15

    Article  Google Scholar 

  • Swanson DA, Casadevall TJ, Dzurisin D, Malone SD, Newhall CG, Weaver CS (1983) Predicting eruptions at Mount St Helens, June 1980 through December 1982. Science 221:1369–1376

    Article  Google Scholar 

  • Takada A (1997) Cyclic flank-vent and central-vent eruption patterns. Bull Volcanol 58:539–556

    Article  Google Scholar 

  • Thelen WA, Malone SD, West ME (2010) Repose time and cumulative moment magnitude: a new tool for forecasting eruptions? Geophys Res Lett 37:L18301

    Article  Google Scholar 

  • Thomas ME, Neuberg JW (2012) What makes a volcano tick-A first explanation of deep multiple seismic sources in ascending magma. Geology 40(4):351–354. doi:10.113/G32868.1

    Article  Google Scholar 

  • Thorlaksson JE (1967) A probability model of volcanoes and the probability of eruptions of Hekla and Katla. Bull Volcanol 31:97–106

    Article  Google Scholar 

  • Todesco M, Rinaldi AP, Bonafede M (2010) Modeling of unrest signals in heterogeneous hydrothermal systems. J Geophys Res 115:B09213

    Article  Google Scholar 

  • Tokarev PI (1978) Prediction and characteristics of the 1975 eruption of Tolbachik volcano, Kamchatka. Bull Volcanol 41:251–258

    Article  Google Scholar 

  • Trasatti E, Bonafede M, Ferrari C, Giunchi C, Berrino G (2011) On deformation sources in volcanic areas: modeling the Campi Flegrei (Italy) 1982–84 unrest. Earth Plan Sci Lett 306:175–185

    Article  Google Scholar 

  • Traversa P, Lengliné O, Macedo O, Metaxian J, Grasso J, Inza A, Taipe E (2011) Short term forecasting of explosions at Ubinas volcano, Perù. J Geophys Res 116:B11301

    Article  Google Scholar 

  • Turner M, Cronin S, Bebbington M, Platz T (2008a) Developing a probabilistic eruption forecast for dormant volcanos: a case study from Mt Taranaki, New Zealand. Bull Volcanol 70:507–515

    Article  Google Scholar 

  • Turner M, Cronin S, Smith I, Bebbington M, Stewart RB (2008b) Using titanomagnetite textures to elucidate volcanic eruption histories. Geology 36:31–34

    Article  Google Scholar 

  • Turner M, Bebbington M, Cronin S, Stewart RB (2009) Merging eruption datasets: building an integrated Holocene eruptive record of Mt Taranaki. Bull Volcanol 71:903–918

    Article  Google Scholar 

  • UNDRO (1985) Volcanic emergency management. Office of the United Nations Disaster Relief Co-Ordination, Geneva

  • Voight B (1988) A method for prediction of volcanic eruptions. Nature 332:125–130

    Article  Google Scholar 

  • Voight B (1989) A relation to describe rate-dependent material failure. Science 243:200–203

    Article  Google Scholar 

  • Voight B, Glicken H, Janda RJ, Douglass PM (1981) Catastrophic rockslide avalanche of May 18. In: Lippman PW, Mullineaux DR (eds) The 1980 eruptions of Mount St. Helens, Washington. US Geological Survey Professional Paper, 1250, pp 347–377

  • Voight B et al (1999) Magma flow instability and cyclic activity at Soufriére Hills volcano, Montserrat British West Indies. Nature 283:1138–1142

    Google Scholar 

  • Wadge G (1982) Steady state volcanism: evidence from eruption histories of polygenetic volcanoes. J Geophys Res 87:4035–4049

    Article  Google Scholar 

  • Wadge G, Burt L (2011) Stress field control of eruption dynamics at a rift volcano: Nyamuragira, D.R.Congo. J Volcanol Geotherm Res 207:1–15

    Article  Google Scholar 

  • Wadge G, Cross A (1988) Quantitative methods for detecting aligned points: an application to the volcanic vents of the Michoacan-Guanajuato volcanic field, Mexico. Geology 16:815–818

    Article  Google Scholar 

  • Wadge G, Young PAV, McKendrick IJ (1994) Mapping lava flow hazards using computer simulation. J Geophys Res 99:489–504

    Article  Google Scholar 

  • Wang T, BebbingtonM(2011) Robust estimation for theWeibull process applied to eruption records. In: Proceedings of the international union of geology and geodesy XXV general assembly, Melbourne, Australia, 28 June–7 July, IAVCEI JV02:920

  • Watt SFL, Mather TA, Pyle DM (2007) Vulcanian explosion cycles: patterns and predictability. Geology 35:839–842

    Article  Google Scholar 

  • Wehrmann H, Dzierma Y (2011) Applicabilty of statistical eruption analysis to the geological record of Villarrica and Llaima Volcanoes, Southern Volcanic Zone, Chile. J Volcanol Geotherm Res 200:99–115

    Article  Google Scholar 

  • Weller JN (2004) Bayesian inference in forecasting volcanic hazards: an example from Armenia. MS Thesis Paper 1298, University of South Florida

  • White RA, Power JA (2001) Distal volcano-tectonic earthquakes: diagnosis and use in eruption forecasting. Trans AGU (Eos) 82:47

    Google Scholar 

  • Wickman FE (1966a) Repose-period patterns of volcanoes. I. Volcanic eruptions regarded as random phenomena. Arch Miner Geol 4:291–367

    Google Scholar 

  • Wickman FE (1966b) Repose-period patterns of volcanoes. V. General discussion and a tentative stochastic model. Arch Mineral Geol 4:351–367

    Google Scholar 

  • Woo G (2008) Probabilistic criteria for volcano evacuation decisions. Nat Hazards 45:87–97. doi:10.1007/s11069-007-9171-9

    Article  Google Scholar 

Download references

Acknowledgements

The authors thank Geoff Wadge and Britt Hill for their painstaking and helpful reviews of the manuscript content and style, and editor Stephen Self for careful checking of, and additional suggestions on, the result. Commitments elsewhere forced Willy Aspinall to withdraw from the authoring team, after making a number of contributions to the paper organization.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Warner Marzocchi.

Additional information

Editorial responsibility: S. Self

Rights and permissions

Reprints and permissions

About this article

Cite this article

Marzocchi, W., Bebbington, M.S. Probabilistic eruption forecasting at short and long time scales. Bull Volcanol 74, 1777–1805 (2012). https://doi.org/10.1007/s00445-012-0633-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00445-012-0633-x

Keywords

Navigation