Skip to main content
Log in

Spatio-temporal hazard estimation in the Auckland Volcanic Field, New Zealand, with a new event-order model

  • Research Article
  • Published:
Bulletin of Volcanology Aims and scope Submit manuscript

Abstract

The Auckland Volcanic Field (AVF) with 49 eruptive centres in the last c. 250 ka presents many challenges to our understanding of distributed volcanic field construction and evolution. We re-examine the age constraints within the AVF and perform a correlation exercise matching the well-dated record of tephras from cores distributed throughout the field to the most likely source volcanoes, using thickness and location information and a simple attenuation model. Combining this augmented age information with known stratigraphic constraints, we produce a new age-order algorithm for the field, with errors incorporated using a Monte Carlo procedure. Analysis of the new age model discounts earlier appreciations of spatio-temporal clustering in the AVF. Instead the spatial and temporal aspects appear independent; hence the location of the last eruption provides no information about the next location. The temporal hazard intensity in the field has been highly variable, with over 63% of its centres formed in a high-intensity period between 40 and 20 ka. Another, smaller, high-intensity period may have occurred at the field onset, while the latest event, at 504 ± 5 years B.P., erupted 50% of the entire field’s volume. This emphasises the lack of steady-state behaviour that characterises the AVF, which may also be the case in longer-lived fields with a lower dating resolution. Spatial hazard intensity in the AVF under the new age model shows a strong NE-SW structural control of volcanism that may reflect deep-seated crustal or subduction zone processes and matches the orientation of the Taupo Volcanic Zone to the south.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  • Adams M (1986) Thermoluminescence dating of plagioclase feldspar. Unpubl MSc Thesis, U Auckland. 104p

  • Affleck DK, Cassidy J, Locke CA (2001) Te Pouhawaiki Volcano and pre-volcanic topography in central Auckland: volcanological and hydrological implications. NZ J Geol Geophys 44:313–321

    Google Scholar 

  • Allen SR, Smith IEM (1994) Eruption styles and volcanic hazard in the Auckland Volcanic Field, New Zealand. Geosci Rep Shizuoka Univ 20:5–14

    Google Scholar 

  • Bebbington M (2007) Identifying volcanic regimes using hidden Markov models. Geophys J Int 171:921–942

    Article  Google Scholar 

  • Bebbington M (2008) Incorporating the eruptive history in a stochastic model for volcanic eruptions. J Volcanol Geotherm Res 175:325–333

    Article  Google Scholar 

  • Bebbington M (2010) Trends and clustering in the onsets of volcanic eruptions. J Geophys Res 115:B01203. doi:10.1029/2009JB006581

    Article  Google Scholar 

  • Bebbington MS, Lai CD (1996) On nonhomogeneous models for volcanic eruptions. Math Geol 28:585–600

    Article  Google Scholar 

  • Cassata WS, Singer BS, Cassidy J (2008) Laschamp and Mono Lake geomagnetic excursions recorded in New Zealand. Earth Planet Sci Lett 268:76–88

    Article  Google Scholar 

  • Cassidy J (2006) Geomagnetic excursion captured by multiple volcanoes in a monogenetic field. Geophys Res Lett 33:L21310

    Article  Google Scholar 

  • Cassidy J, Locke CA, Miller CA, Rout DJ (1999) The Auckland volcanic field, New Zealand: geophysical evidence for its eruption history. In: Firth CG, McGuire WJ (eds) Volcanoes in the Quaternary. Geol Soc Lond Spec Publ 161: 1–10

  • Condit CD, Connor CB (1996) Recurrence rates of volcanism in basaltic volcanic fields: an example from the Springerville volcanic field, Arizona. Geol Soc Am Bull 108:1225–1241

    Article  Google Scholar 

  • Connor CB, Connor LJ (2009) Estimating spatial density with kernel methods. In: Connor CB, Chapman NA, Connor LJ (eds) Volcanic and tectonic hazard assessment for nuclear facilities. Cambridge University Press, Cambridge, UK, pp 346–368

    Chapter  Google Scholar 

  • Connor CB, Conway FM (2000) Basaltic volcanic fields. In: Sigurdsson H, Houghton BF, McNutt SR, Rymer H, Stix J, Ballard RD (eds) Encyclopedia of volcanoes. Academic, San Diego, pp 331–343

    Google Scholar 

  • Connor CB, Hill BE (1995) Three nonhomogeneous Poisson models for the probability of basaltic volcanism: application to the Yucca Mountain region, Nevada. J Geophys Res 100:10107–10125

    Article  Google Scholar 

  • Connor CB, Stamatakos JA, Ferrill DA, Hill BE, Ofoegbu GI, Conway FM, Sagar B, Trapp J (2000) Geological factors controlling patterns of small-volume basaltic volcanism: application to a volcanic hazards assessment at Yucca Mountain, Nevada. J Geophys Res 105:417–432

    Article  Google Scholar 

  • Conway FM, Connor CB, Hill BE, Condit CD, Mullaney K, Hall CM (1998) Recurrence rates of basaltic volcanism in SP cluster, San Francisco volcanic field, Arizona. Geology 26:655–658

    Article  Google Scholar 

  • Cronin S, Bebbington M, Lai CD (2001) A probabilistic assessment of eruption recurrence on Taveuni volcano, Fiji. Bull Volcanol 63:274–288

    Article  Google Scholar 

  • Daley DJ, Vere-Jones D (2003) An introduction to the theory of point processes. Volume 1, 2nd edn. Springer, New York, 469 p

    Google Scholar 

  • Duong T (2007) ks: kernel density estimations and kernel discriminant analysis for multivariate data in R. J Statist Softw 21(7):1–16

    Google Scholar 

  • Eade J (2009) Petrology and correlation of lava flows from the central part of the Auckland Volcanic Field. Unpubl MSc thesis, U Auckland

  • East GRW, George AK (2003) The construction of the Auckland Central Remand Prison on the Mt Eden basalt flow. In: Crawford SA, Baunton P, Hargraves S (eds) Geotechnics on the volcanic edge. Institution of Professional Engineers NZ, Wellington, pp 387–396

    Google Scholar 

  • Edbrooke SW (2001) Geology of the Auckland area. Institute of Geological and Nuclear Sciences 1:250 000 Geological Map 3. 1 sheet + 74p. GNS Science, Lower Hutt

    Google Scholar 

  • Fergusson G, Rafter TA (1959) New Zealand C14 age measurements—4. NZ J Geol Geophys 2:208–241

    Google Scholar 

  • Firth CW (1930) The geology of the north-west portion of Manukau County, Auckland. Trans Roy Soc NZ 61:85–137

    Google Scholar 

  • Grant-Taylor TC, Rafter TA (1963) New Zealand natural radiocarbon measurements I–V. Radiocarbon 5:118–162

    Google Scholar 

  • Grant-Taylor TC, Rafter TA (1971) New Zealand radiocarbon age measurements—6. NZ J Geol Geophys 14:364–402

    Google Scholar 

  • Grenfell H, Kenny JA (1995) Another piece in the Auckland Volcanic Field jigsaw puzzle—or are we stumped? Geol Soc NZ Newsl 107:42–43

    Google Scholar 

  • Hasenaka T, Carmichael ISE (1985) The cinder cones of Michoacàn-Guanajuato, central Mexico: their age, volume and distribution, and magma discharge rate. J Volcanol Geotherm Res 25:105–124

    Article  Google Scholar 

  • Hayward BW (2008) Ash Hill Volcano, Wiri. Geocene 3:8

    Google Scholar 

  • Hawkes AG (1971) Spectra of some self-exciting and mutually exciting point processes. Biometrika 58:83–90

    Article  Google Scholar 

  • Hawkes A, Adamopoulos L (1973) Cluster models for earthquakes—regional comparisons. Bull Int Stat Inst 45:454–461

    Google Scholar 

  • Hill BE, Connor CB, Jarzemba MS, La Femina PC, Navarro M, Strauch W (1998) 1995 eruptions of Cerro Negro volcano, Nicaragua, and risk assessment for future eruptions. Geol Soc Amer Bull 110:1231–1241

    Article  Google Scholar 

  • Horrocks M, Augustinus P, Deng Y, Shane P, Andersson S (2005a) Holocene vegetation, environment, and tephra recorded from Lake Pupuke, Auckland, New Zealand. NZ J Geol Geophys 48:85–94

    Google Scholar 

  • Horrocks M, Nichol SL, D’Costa DM, Shane P, Prior C (2005b) Paleoenvironment and human impact in modifying vegetation at Mt St John, Auckland isthmus, New Zealand. NZ J Bot 43:211–221

    Article  Google Scholar 

  • Kermode LO (1992) Geology of the Auckland urban area. Scale 1:50 000. Institute of Geological and Nuclear Sciences geological map 2. 1 sheet + 63p. GNS Science, Lower Hutt

    Google Scholar 

  • Kermode LO, Smith IEM, Moore CL, Stewart RB, Ashcroft J, Nowell SB, Hayward BW (1992) Inventory of Quaternary volcanoes and volcanic features of Northland, South Auckland and Taranaki. Geol Soc NZ Misc Publ 61. 100 p

  • Kienle J, Kyle PR, Self S, Motyka RJ, Lorenz V (1980) Ukinrek Maars, Alaska: I. April 1977 eruption sequence, petrology and tectonic setting. J Volcanol Geotherm Res 7:11–37

    Article  Google Scholar 

  • Lindsay J, Leonard G (2009) Age of the Auckland Volcanic Field. Inst Earth Sciences and Engineering Report 1-2009.02, U Auckland, NZ, 38p

  • Lowe DJ, Shane PAR, Alloway BR, Newnham RW (2008) Fingerprints and age models for widespread New Zealand tephra marker beds erupted since 30,000 years ago: a framework for NZ-INTIMATE. Quatern Sci Rev 27:95–126

    Article  Google Scholar 

  • Magill C, Blong R (2005) Volcanic risk ranking for Auckland, New Zealand. I: methodology and hazard investigation. Bull Volcanol 67:331–339

    Article  Google Scholar 

  • Magill CR, McAneney KJ, Smith IEM (2005) Probabilistic assessment of vent locations for the next Auckland volcanic field event. Math Geol 37:227–242

    Article  Google Scholar 

  • Magill CR, Hurst AW, Hunter LJ, Blong RJ (2006) Probabilistic tephra fall simulation for the Auckland Region, New Zealand. J Volcanol Geotherm Res 153:370–386

    Article  Google Scholar 

  • Martin AJ, Umeda K, Connor CB, Weller JN, Zhao D, Takahashi M (2004) Modeling long-term volcanic hazards through Bayesian inference: an example from the Tohoku volcanic arc, Japan. J Geophys Res 109:B10208

    Article  Google Scholar 

  • McDougall I, Polach HA, Stipp JJ (1969) Excess radiogenic argon in young sub-aerial basalts from the Auckland volcanic field, New Zealand. Geochim Cosmochim Acta 33:1485–1520

    Article  Google Scholar 

  • Mochizuki N, Tsunakawa H, Shibuya H, Tagami T, Ozawa A, Cassidy J, Smith IEM (2004) K–Ar ages of the Auckland geomagnetic excursions. Earth Planet Space 56:283–288

    Google Scholar 

  • Molloy C, Shane P, Augustinus P (2009) Eruption recurrence rates in a basaltic volcanic field based on tephra layers in maar sediments: implications for hazards in the Auckland volcanic field. GSA Bull 121:1666–1677

    Article  Google Scholar 

  • Newnham RM, Lowe DJ, Alloway BV (1999) Volcanic hazards in Auckland, New Zealand: a preliminary assessment of the threat posed by central North Island silicic volcanism based on the Quaternary tephrostratigraphical record. In: Volcanoes in the Quaternary, Firth C, McGuire WJ (eds). Special Publ 161, Geol Soc London; 27–45

  • Newnham RM, Lowe DJ, Giles T, Alloway BV (2007) Vegetation and climate of Auckland, New Zealand, since ca. 32 000 cal. yr ago: support for an extended LGM. J Quatern Sci 22:517–534

    Article  Google Scholar 

  • Ogata Y (1988) Statistical models for earthquake occurrences and residual analysis for point processes. J Am Stat Assoc 83:9–27

    Article  Google Scholar 

  • Phillips S (1989) Aspects of thermoluminescence dating of plagioclase feldspar. Unpubl MSc thesis, U Auckland. 39p

  • Polach HA, Chappell J, Lovering JF (1969) Australian National University radiocarbon date list. Radiocarbon 11:245–262

    Google Scholar 

  • Reid SJ (1980) Frequencies of low-level free atmospheric wind flows in northern and southern New Zealand. New Zealand Meteorological Service, Wellington

    Google Scholar 

  • Rhoades DA, Dowrick DJ, Wilson CJN (2002) Volcanic hazard in New Zealand: scaling and attenuation relations for tephra fall deposits from Taupo Volcano. Nat Hazards 26:147–174

    Article  Google Scholar 

  • Rout DJ, Cassidy J, Locke CA, Smith IEM (1993) Geophysical evidence for temporal and structural relationships within the monogenetic basalt volcanoes of the Auckland volcanic field, northern New Zealand. J Volcanol Geotherm Res 57:71–83

    Article  Google Scholar 

  • Sameshima T (1990) Chemical and dating data on some of the monogenetic volcanoes of Auckland. Geol Soc NZ Annual Conference Nov 1990, Napier, Programme and Abstracts. p118

  • Sandiford A, Alloway B, Shane P (2001) A 28 000–6600 cal yr record of local and distal volcanism preserved in a paleolake, Auckland, New Zealand. NZ J Geol Geophys 44:323–336

    Google Scholar 

  • Sandiford A, Horrocks M, Newnham R, Ogden J, Alloway B (2002) Environmental change during the last glacial maximum (c. 25 000–c. 16 500 years BP) at Mt Richmond, Auckland Isthmus, New Zealand. J R Soc NZ 32:155–167

    Google Scholar 

  • Searle EJ (1959a) Pleistocene and Recent studies of Waitemata Harbour: Part 2—North Shore and Shoal Bay. NZ J Geol Geophys 2:95–107

    Google Scholar 

  • Searle EJ (1959b) The volcanoes of Ihumatao and Mangere, Auckland. NZ J Geol Geophys 2:870–888

    Google Scholar 

  • Searle EJ (1961) The age of the Auckland volcanoes. NZ Geogr 17:52–63

    Article  Google Scholar 

  • Searle EJ (1962) The volcanoes of Auckland City. NZ J Geol Geophys 5:193–227

    Google Scholar 

  • Searle EJ (1964) City of volcanoes. A geology of Auckland. Longman Paul, Auckland, 112p

    Google Scholar 

  • Searle EJ (1965) Auckland volcanic district. NZ Dept Sci Ind Res Info Ser 49:90–103

    Google Scholar 

  • Self S, Kienle J, Huot J-P (1980) Ukinrek Maars, Alaska: II. Deposits and formation of the 1977 craters. J Volcanol Geotherm Res 7:39–65

    Article  Google Scholar 

  • Shane P (2005) Towards a comprehensive distal andesitic tephrostratigraphic framework for New Zealand based on eruptions from Egmont Volcano. J Quat Sci 20:45–57

    Article  Google Scholar 

  • Shane P, Hoverd J (2002) Distal record of multi-sourced tephra in Onepoto Basin, Auckland, New Zealand: implications for volcanic chronology, frequency and hazards. Bull Volcanol 64:441–454

    Article  Google Scholar 

  • Shane P, Sandiford A (2003) Paleovegetation of marine isotope stages 4 and 3 in northern New Zealand and the age of the widespread Rotoehu Tephra. Quat Res 59:420–429

    Article  Google Scholar 

  • Shane P, Smith IEM (2000) Geochemical characterisation of basaltic tephra deposits in the Auckland Volcanic Field. NZ J Geol Geophys 43:569–577

    Google Scholar 

  • Sibson RH (1968) Late Pleistocene volcanism in the East Tamaki district. Unpubl BSc(Hons) thesis, U Auckland

  • Smith IEM, Blake S, Wilson CJN, Houghton BF (2008) Deep-seated fractionation during the rise of a small-volume basalt magma batch: Crater Hill, Auckland, New Zealand. Contrib Mineral Petrol 155:511–527

    Article  Google Scholar 

  • Smith IEM, McGee LE, Lindsay JM (2009) Review of the petrology of the Auckland Volcanic Field. Institute of Earth Science and Engineering Report, 1-2009.03. IESE, Auckland, 36p

    Google Scholar 

  • Spörli KB, Eastwood VR (1997) Elliptical boundary of an intraplate volcanic field, Auckland, New Zealand. J Volcanol Geotherm Res 79:169–179

    Article  Google Scholar 

  • Takada A (1994) The influence of regional stress and magmatic input on styles of monogenetic and polygenetic volcanism. J Geophys Res 99:13563–13574

    Article  Google Scholar 

  • Turner M, Cronin S, Smith I, Bebbington M, Stewart RB (2008a) Using titanomagnetite textures to elucidate volcanic eruption histories. Geology 36:31–34

    Article  Google Scholar 

  • Turner M, Cronin S, Bebbington M, Platz T (2008b) Developing a probabilistic eruption forecast for dormant volcanos; a case study from Mt Taranaki, New Zealand. Bull Volcanol 70:507–515

    Article  Google Scholar 

  • Turner M, Bebbington M, Cronin S, Stewart RB (2009) Merging eruption datasets: building an integrated Holocene eruptive record of Mt Taranaki. Bull Volcanol 71:903–918

    Article  Google Scholar 

  • Valentine GA, Gregg TKP (2008) Continental basaltic volcanoes—processes and problems. J Volcanol Geotherm Res 177:857–873

    Article  Google Scholar 

  • Vere-Jones D, Ozaki T (1982) Some examples of statistical inference applied to earthquake data. Ann Inst Stat Math 34:189–207

    Article  Google Scholar 

  • Von Veh MW, Nemeth K (2009) An assessment of the alignments of vents on geostatistical analysis in the Auckland Volcanic Field, New Zealand. Géomorphol Relief Processus Environment 3:175–186

    Google Scholar 

  • Ward GK, Wilson SR (1978) Procedures for comparing and combining radiocarbon age determinations: a critique. Archaeometry 20:19–31

    Article  Google Scholar 

  • Wood IA (1991) Thermoluminescence dating of the Auckland and Kerikeri basalt fields. Unpubl MSc thesis, U Auckland. 141p

Download references

Acknowledgements

We wish to acknowledge support by the NZ FRST-IIOF Grant “Facing the challenge of Auckland’s Volcanism” (MAUX0808). We thank Jan Lindsay and Ian Smith (U of Auckland) for valuable discussion on event ages and other features of the AVF and Kate Arentsen (Massey U) for comments on the manuscript. Reviews by Olivier Jaquet and an anonymous referee led to important improvements in the paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mark S. Bebbington.

Additional information

Editorial responsibility: J.D.L. White

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bebbington, M.S., Cronin, S.J. Spatio-temporal hazard estimation in the Auckland Volcanic Field, New Zealand, with a new event-order model. Bull Volcanol 73, 55–72 (2011). https://doi.org/10.1007/s00445-010-0403-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00445-010-0403-6

Keywords

Navigation