Skip to main content
Log in

Predation by sparrowhawks decreases with increased breeding density in a songbird, the great tit

  • Population Ecology
  • Published:
Oecologia Aims and scope Submit manuscript

Abstract

Predators may regulate prey populations if predation rate increases with prey density. Alternatively, if space-limited (e.g. territorial) predators become ‘satiated’ when prey exceed a certain density, increased prey abundance may lead to reduced predation rate. These alternatives have been difficult to test experimentally for mobile prey in the wild. We present such a test, manipulating the density of great tits (Parus major) by adding nest boxes in territories of sparrowhawks (Accipiter nisus). Predation rate was measured for young tits after they left the nests. Although the great tit is an important prey, there was no evidence for regulation during the breeding season: the rate of hawk predation declined with increasing density of tits. This result was not confounded by changes in breeding density of alternative prey species (other songbirds). Hawk predation can therefore favour dense breeding in a territorial (solitary) bird, and conspecific attraction and aggregation reported in several territorial species may partly result from predation pressure. This result also has potential implications for conservation work.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Cramp S, Perrins CM (1993) The birds of the Western Palearctic, vol 7. Oxford University Press, Oxford

  • Crawley MJ (1992) Natural enemies: the population biology of predators, parasites and diseases. Blackwell, Oxford

    Google Scholar 

  • Curio E (1976) The ethology of predation. Springer, Berlin Heidelberg New York

    Google Scholar 

  • Etterson MA (2003) Conspecific attraction in loggerhead shrikes: implications for habitat conservation and reintroduction. Biol Conserv 114:199–205

    Article  Google Scholar 

  • Forman RTT (1999) Land mosaics—the ecology of landscapes and regions. Cambridge University Press, Cambridge

    Google Scholar 

  • Foster WA, Treherne JE (1981) Evidence for the dilution effect in the selfish herd from fish predation on a marine insect. Nature 295:466–467

    Google Scholar 

  • Geer TA (1978) Effects of nesting sparrowhawks on nesting tits. Condor 80:419–422

    Google Scholar 

  • Geer TA (1982) The selection of tits Parus spp. by sparrowhawks Accipiter nisus. Ibis 124:159–167

    Google Scholar 

  • Gosler A (1993) The great tit. Hamlyn, London

    Google Scholar 

  • Gosler AG, Greenwood JJD, Perrins C (1995) Predation risk and the cost of being fat. Nature 377:621–623

    Article  CAS  Google Scholar 

  • Götmark F (2002) Predation by sparrowhawks favours early breeding and small broods in great tits. Oecologia 130:25–32

    Google Scholar 

  • Götmark F, Olsson J (1997) Artificial colour mutation: do red-painted great tits experience increased or decreased predation? Anim Behav 53:83–91

    Article  Google Scholar 

  • Götmark F, Post P (1996) Prey selection by sparrowhawks Accipiter nisus: relative predation risk for breeding passerine birds in relation to their size, ecology, and behaviour. Philos Trans R Soc Lond B 351:1559–1577

    Google Scholar 

  • Götmark F, Post P, Olsson J, Himmelmann D (1997) Natural selection and sexual dimorphism: sex-biased sparrowhawk predation favours crypsis in female chaffinches. Oikos 80:540–548

    Google Scholar 

  • Gray IL (1987) The feeding ecology of the sparrowhawk (Accipiter nisus) outside the breeding season. DPhil Thesis, University of Oxford

  • Hamilton WD (1971) Geometry for the selfish herd. J Theoret Biol 31:295–311

    CAS  Google Scholar 

  • Hudson P (1992) Grouse in space and time: the population biology of a managed gamebird. The Game Conservancy, Fordingbridge, UK

    Google Scholar 

  • Krebs JR, Davies NB (1993) An introduction to behavioural ecology. Blackwell, Oxford

    Google Scholar 

  • Macdonald DW, Mace GM, Barretto GR (1999) The effects of predators on fragmented prey populations: a case study for the conservation of endangered prey. J Zool 247:487–506

    Article  Google Scholar 

  • Manly BJF (1997) Randomization, bootstrap and Monte Carlo methods in Biology. Chapman and Hall, London

    Google Scholar 

  • Marler P (1955) Characteristics of some animal calls. Nature 176:6–8

    Google Scholar 

  • Martin TE (1992) Interaction of nest predation and food limitation in reproductive strategies. In: Power DM (ed) Current ornithology, vol 9. Plenum, New York, pp 163–197

  • McCleery RH, Perrins CM (1991) Effects of predation on the numbers of Great Tits Parus major. In: Perrins CM, Lebreton JD, Hirons GJM (eds) Bird population studies: relevance to conservation and management. Oxford University Press, Oxford, pp 129–147

    Google Scholar 

  • Mönkkönen M, Härdling R, Forsman JT, Tuomi J (1999) Evolution of heterospecific attraction: using other species as cues in habitat selection. Evol Ecol 13:91–104

    Google Scholar 

  • Muller KL, Stamps JA, Krishnan VV, Willits NH (1997) The effects of conspecific attraction and habitat quality on habitat selection in territorial birds (Troglodytes aedon). Am Nat 150:650–661

    Article  Google Scholar 

  • Newton I (1986) The sparrowhawk. Poyser, Calton, UK

    Google Scholar 

  • Newton I (1993) Predation and limitation of bird numbers. Curr Ornithol 11:143–198

    Google Scholar 

  • Newton I (1994) The role of nest sites in limiting the numbers of hole-nesting birds: a review. Biol Conserv 70:265–276

    Article  Google Scholar 

  • Newton I (1998) Population limitation in birds. Academic Press, London

    Google Scholar 

  • Newton I, Dale L, Rothery P (1997) Apparent lack of impact of sparrowhawks on the breeding densities of some woodland songbirds. Bird Study 44:129–135

    CAS  PubMed  Google Scholar 

  • Perrins CM, Geer TA (1980) The effect of sparrowhawks on tit populations. Ardea 68:133–142

    Google Scholar 

  • Reynolds RT, Meslow EC (1984) Partitioning of food and niche characteristics of coexisting Accipiter during breeding. Auk 101:761–779

    Google Scholar 

  • Selås V, Rafoss T (1999) Ranging behaviour and foraging habitats of breeding sparrowhawks in a continuous forest area in Norway. Ibis 141:269–276

    Google Scholar 

  • Sinclair ARE, Pech RP (1996) Density dependence, stochasticity, compensation and predator regulation. Oikos 75:164–173

    Google Scholar 

  • Sinclair ARE, Pech RP, Dickman CR, Hik D, Mahon P, Newsome AE (1998) Predicting effects of predation on conservation of endangered prey. Conserv Biol 12:564–575

    Article  Google Scholar 

  • Slagsvold T (1980) Habitat selection in birds: on the presence of other bird species with special regard to Turdus pilaris. J Anim Ecol 49:523–536

    Google Scholar 

  • Soulé M (1987) Viable populations for conservation. Cambridge University Press, Cambridge

    Google Scholar 

  • Spiller DA, Schoener TW (1998) Lizards reduce spider species richness by excluding rare species. Ecology 79:503–516

    Google Scholar 

  • Stamps JA (1988) Conspecific attraction and aggregation in territorial species. Am Nat 131:329–347

    Article  Google Scholar 

  • Thomson DL, Green RE, Gregory RD, Baillie SR (1998) The widespread declines of songbirds in rural Britain do not correlate with the spread of their avian predators. Proc R Soc Lond B 265:2057–2062

    Article  Google Scholar 

  • Tinbergen L (1946) Sperver als Roofvijand van Zangfvogels. Ardea 34:1–123

    Google Scholar 

  • Ward MP, Schlossberg S (2004) Conspecific attraction and the conservation of territorial songbirds. Conserv Biol 18:519–525

    Article  Google Scholar 

Download references

Acknowledgements

We thank Martin Bergström, Jan Bergqvist, Anders Enemar, Peter Post and especially Jan Olsson for valuable help in the field, C. Askenmo, T. Bohlin, E. Korpimäki, I. Krams, I. Newton, P. Post, V. Selås, A.R.E. Sinclair and anonymous referees for comments and suggestions on the manuscript, and Dr P. Johannesson and Dr K. Wiklander (Department of Mathematical Statistics, Göteborg University) for confirming our statistical methods. The study was funded mainly by grants from the Swedish Research Council (NFR/VR) to F.G. and conducted in accordance with national laws for scientific research, including permit for ringing of birds issued by the Natural History Museum, Stockholm. We wish to thank the great tits, Irma Johansson, the land owners and Västkuststiftelsen for cooperation and help during our study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Frank Götmark.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Götmark, F., Andersson, M. Predation by sparrowhawks decreases with increased breeding density in a songbird, the great tit. Oecologia 142, 177–183 (2005). https://doi.org/10.1007/s00442-004-1715-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00442-004-1715-z

Keywords

Navigation