Skip to main content
Log in

Effects of competition and predation operating at individual and population levels: an overview of results from a long-term field experiment

  • Special Collection: Celebrating 200 Volumes of Oecologia
  • Published:
Oecologia Aims and scope Submit manuscript

Abstract

After an overview of the discussion about the existence of intra- and interspecific competition that illustrates the contradictory opinions I conclude that long-term field experiments are needed for firm conclusions. I discuss in some detail the role of two factors that limit population size of secondary cavity nesting birds e.g. territorial behavior and adequate cavities. This is followed by an overview of experimental long-term field studies in Belgium showing that intra- and interspecific competition in a great tit-blue tit system exists. By using nestbox configurations with high densities of nestboxes that differ in the diameter of their entrance hole in replicate study plots it is possible to manipulate the breeding densities of great tit Parus major and blue tit Cyanistes caeruleus independently, thereby varying the intensity of intra- and interspecific competition between these two coexisting species. When blue tit densities are experimentally increased local recruitment of great tits increases, and adult great tit post-breeding dispersal to other study plots decreases, implying that great tits use blue tit density to evaluate habitat quality and that high blue tit density results in heterospecific attraction. The reverse is not true. An experimental increase in great tit density leading to an increase in interspecific competition in a plot where blue tit density was already high leads to a decrease in blue tit nestling mass (illustrating interspecific competition for food), but to a gradual increase in blue tit body size. Both are primarily caused by an increase in the body size of immigrants (caused by intraspecific competition for protected roosting holes) in contrast to the control plot, where neither is observed. I also summarize behavioral, ecological and possible evolutionary effects of sparrowhawks on blue tits after sparrowhawks settled in an isolated study plot halfway through the study: adult survival substantially decreased for both sexes, but more for females that laid large clutches, leading to selection for females that laid a smaller clutch. This led to a change in the reproduction/survival life-history trade-off. Adult winter weights and nestling weights decreased, and the heaviest fledglings were selected against. Furthermore the frequency of polygyny increased. The long-term experiments also document the role of the use of public information and that species that compete can be attracted to sites in which competitor density is high.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data availability

All data are availble in the SPI-Birds data hub (Culina et al 2021).

References

  • Adriaensen F, Dhondt AA, Van Dongen S, Lens L, Matthysen E (1998) Stabilizing selection on blue tit fledgling mass in the presence of sparrowhawks. Proc Royal Soc Lond Series B-Biol Sci 265:1011–1016

    Article  Google Scholar 

  • Alatalo RV, Lundberg A, Bjorklund M (1982) Can the song of male birds attract other males—an experiment with the pied flycatcher Ficedula hypoleuca. Bird Behav 4:42–45

    Article  Google Scholar 

  • Andrewartha HG, Birch LC (1954) The distribution and abundance of animals. The University of Chicago Press, Chicago

    Google Scholar 

  • Baeyens G (1979) Description of the social behavior of the magpie (Pica pica). Ardea 67:28–41

    Google Scholar 

  • Birch LC (1971) The role of environmental heterogeneity and genetical heterogeneity in deterining distribution and abundance. In: den Boer PJ, Gradwell GR (eds) Proceedings of the Advanced Study Institute on 'Dynamics of Numbers in Populations' Oosterbeek 1970. PUDOC, Wageningen, pp 109–128

  • Boag PT, Grant PR (1978) Heritability of external morphology in Darwin finches. Nature 274:793–794

    Article  Google Scholar 

  • den Boer PJ (1971) Stabilization of animal numbers and the heterogeneity of the environment: the problem of the persistence of sparse populations. In: Den Boer PJ, Gradwell GR (eds) Proceedings of the Advanced Study Institute on 'Dynamics of Numbers in Populations' Oosterbeek 1970. PUDOC, Wageningen, pp 77–97

  • Brown JL (1969) Territorial behavior and population regulation in birds. Wilson Bull 81:293–329

    Google Scholar 

  • Cayuela H, Grolet O, Joly P (2018) Context-dependent dispersal, public information, and heterospecific attraction in newts. Oecologia 188:1069–1080. https://doi.org/10.1007/s00442-018-4267-3

    Article  PubMed  Google Scholar 

  • Chitty D (1967) What regulates bird populations. Ecology 48:698–701

    Article  Google Scholar 

  • Cockle KL, Martin K, Drever MC (2010) Supply of tree-holes limits nest density of cavity-nesting birds in primary and logged subtropical Atlantic forest. Biol Cons 143:2851–2857

    Article  Google Scholar 

  • Connell JH (1971) On the role of natural enemies in preventing competitive exclusion in some marine animals and in rain forest trees. In: den Boer PJ, Gradwell GR (eds) Proceedings of the Advanced Study Institute on ‘Dynamics of Numbers in Populations’ Oosterbeek 1970. PUDOC, Wageningen, pp 298–312

    Google Scholar 

  • Connell JH (1980) Diversity and the coevolution of competitors, or the ghost of competition past. Oikos 35:131–138

    Article  Google Scholar 

  • Cornelius C et al (2008) Cavity-nesting birds in neotropical forests: cavities as a potentially limiting resource. Ornitologia Neotropical 19:253–268

    Google Scholar 

  • Coslovsky M, Richner H (2011) Predation risk affects offspring growth via maternal effects. Funct Ecol 25:878–888. https://doi.org/10.1111/j.1365-2435.2011.01834.x

    Article  Google Scholar 

  • Culina A et al (2021) Connecting the data landscape of long-term ecological studies: the SPI-Birds data hub. J Anim Ecol 90:2147–2160. https://doi.org/10.1111/1365-2656.13388

    Article  PubMed  Google Scholar 

  • Danchin E, Giraldeau LA, Valone TJ, Wagner RH (2004) Public information: from nosy neighbors to cultural evolution. Science 305:487–491

    Article  CAS  PubMed  Google Scholar 

  • Dhondt AA (1971a) The regulation of numbers in Belgian populations of great tits. In: Den Boer PJ, Gradwell GR (eds) Proceedings of the Advanced Study Institute on 'Dynamics of Numbers in Populations' Oosterbeek 1970. PUDOC, Wageningen, pp 532–547

    Google Scholar 

  • Dhondt AA (1971b) Some factors influencing territory in the great tit Parus major L. Gerfaut - Giervalk 61:125–135

    Google Scholar 

  • Dhondt AA (1977) Interspecific competition between great and blue tit. Nature 268:521–523

    Article  Google Scholar 

  • Dhondt AA (1979) Summer dispersal and survival of juvenile great tits in Southern Sweden. Oecologia 42:139–157

    Article  PubMed  Google Scholar 

  • Dhondt AA (1982) Heritability of blue tit tarsus length from normal and cross-fostered broods. Evolution 36:418–419

    Article  PubMed  Google Scholar 

  • Dhondt AA (1987a) Polygynous blue tits and monogamous great tits—does the polygyny-threshold model hold. Am Nat 129:213–220. https://doi.org/10.1086/284631

    Article  Google Scholar 

  • Dhondt AA (1987b) Reproduction and survival of polygynous and monogamous blue tit Parus caeruleus. Ibis 129:327–334. https://doi.org/10.1111/j.1474-919X.1987.tb03176.x

    Article  Google Scholar 

  • Dhondt AA (1988) The necessity of population genetics for understanding evolution: an ecologist’s view. In: De Jong G (ed) Population Genetics and Evolution. Springer-Verlag, Berlin, pp 14–18

    Chapter  Google Scholar 

  • Dhondt AA (2001) Trade-offs between reproduction and survival in Tits. Ardea 89:155–166

    Google Scholar 

  • Dhondt AA (2010) Effects of competition on great and blue tit reproduction: intensity and importance in relation to habitat quality. J Anim Ecol 79:257–265

    Article  PubMed  Google Scholar 

  • Dhondt AA (2012) Interspecific competition in birds. Oxford University Press, Oxford

    Google Scholar 

  • Dhondt AA, Adriaensen F (1999) Experiments on competition between great and blue tit: effects on blue tit reproductive success and population processes. Ostrich 70:39–48

    Article  Google Scholar 

  • Dhondt AA, Eyckerman R (1980a) Competition and the regulation of numbers in great and blue tit. Ardea 68:121–132

    Google Scholar 

  • Dhondt AA, Eyckerman R (1980b) Competition between the great tit and the blue tit outside the breeding season in field experiments. Ecology 61:1291–1296

    Article  Google Scholar 

  • Dhondt AA, Hublé J (1968) Fledging date and sex in relation to dispersal in young great tits. Bird Stud 15:127–234

    Article  Google Scholar 

  • Dhondt AA, Eyckerman R, Hublé J (1979) Will great tits become little tits. Biol J Lin Soc 11:289–294

    Article  Google Scholar 

  • Dhondt AA, Eyckerman R, Schillemans J (1983) Polygyny by blue tits. British Birds 76:34–36

    Google Scholar 

  • Dhondt AA, Adriaensen F, Matthysen E, Kempenaers B (1990a) Nonadaptive clutch sizes in tits. Nature 348:723–725

    Article  Google Scholar 

  • Dhondt AA, Matthysen E, Adriaensen F, Lambrechts MM (1990b) Population dynamics and regulation of a high density Blue Tit population. In: Blondel J, Gosler A, Lebreton J-D, McCleery R (eds) Population Biology of Passerine Birds. Springer Verlag, Berlin, Heidelberg, pp 39–53

    Chapter  Google Scholar 

  • Dhondt AA, Kempenaers B, De Laet J (1991) Protected winter roosting sites as a limiting resource for Blue Tits. Acta XX Congressus Internationalis Ornithologici New Zealand Ornithological Congress trust Board, Christchurch, New Zealand. 1436–1443

  • Dhondt AA, Adriaensen F, Plompen W (1996) Between- and within-population variation in mate fidelity in the Great Tit. In: Black JM (ed) Partnerships in Birds. Oxford University Press, Oxford, pp 235–248

    Chapter  Google Scholar 

  • Dhondt AA, Kempenaers B, Clobert J (1998) Sparrowhawk Accipiter nisus predation and blue tit Parus caeruleus adult annual survival rate. Ibis 140:580–584. https://doi.org/10.1111/j.1474-919X.1998.tb04702.x

    Article  Google Scholar 

  • Doligez B, Danchin E, Clobert J, Gustafsson L (1999) Tbe use of conspecific reproductive success for breeding habitat selection in a non-colonial, hole-nesting species, the collared flycatcher. J Anim Ecol 68:1193–1206. https://doi.org/10.1046/j.1365-2656.1999.00362.x

    Article  Google Scholar 

  • Doligez B, Danchin E, Clobert J (2002) Public information and breeding habitat selection in a wild bird population. Science 297:1168–1170

    Article  CAS  PubMed  Google Scholar 

  • Doligez B, Part T, Danchin E (2004) Prospecting in the collared flycatcher: gathering public information for future breeding habitat selection? Anim Behav 67:457–466. https://doi.org/10.1016/j.anbehav.2003.03.010

    Article  Google Scholar 

  • Drent PJ (1984) Mortality and dispersal in summer and its consequences for the density of great tits Parus major at the onset of autumn. Ardea 72:127–162

    Google Scholar 

  • Drent PJ (1987) The importance of nestboxes for territory settlement, survival and density of the great tit. Ardea 75:59–71

    Google Scholar 

  • Droge DL, Gowaty PA, Weathers WW (1991) A test for differences in field metabolic rates of nestling Eastern Bluebirds. Condor 93:793–798. https://doi.org/10.2307/3247713

    Article  Google Scholar 

  • East ML, Perrins CM (1988) The effect of nestboxes on breeding populations of birds in broadleaved temperate woodlands. Ibis 130:393–401

    Article  Google Scholar 

  • Ens BJ, van de Pol M, Goss-Custard JD (2014) The study of career decisions: oystercatchers as social prisoners. In: Naguib M, Barrett L, Brockmann HJ, Healy S, Mitani JC, Roper TJ, Simmons LW (eds) Advances in the Study of Behavior, vol 46. pp 343–420

  • Fisher RA (1954) Statististical methods for research workers, 12th edn. Edinburgh, Oliver and Boyd

    Google Scholar 

  • Forsman JT, Hjernquist MB, Taipale J, Gustafsson L (2008) Competitor density cues for habitat quality facilitating habitat selection and investment decisions. Behav Ecol 19:539–545

    Article  Google Scholar 

  • Fretwell SD, Lucas HL (1969) On territorial behavior and other factors influencing habitat distribution in birds. 1 theoretical development. Acta Biotheor 19:16–36

    Article  Google Scholar 

  • Garnett MC (1981) Body size, its heritability and influence on juvenile survival among great tits, Parus major. Ibis 123:31–41

    Article  Google Scholar 

  • Gause GF (1934) The struggle for existence. The Williams & Wilkins company, Baltimore

    Book  Google Scholar 

  • Gentle LK, Gosler AG (2001) Fat reserves and perceived predation risk in the great tit, Parus major. Proc Royal Soc Lond Ser B-Biol Sci 268:487–491

    Article  CAS  Google Scholar 

  • Gosler AG, Greenwood JJD, Perrins C (1995) Predation risk and the cost of being fat. Nature 377:621–623

    Article  CAS  Google Scholar 

  • Goymann W, Landys MM (2011) Testosterone and year-round territoriality in tropical and non-tropical songbirds. J Avian Biol 42:485–489. https://doi.org/10.1111/j.1600-048X.2011.05464.x

    Article  Google Scholar 

  • Hairston NG (1989) Ecological experiments : purpose, design, and execution. Cambridge University Press, Cambridge

    Book  Google Scholar 

  • Hoenig BD, Trevelline BK, Kautz A, Latta SC, Porter BA (2022) Two is better than one: coupling DNA metabarcoding and stable isotope analysis improves dietary characterizations for a riparian-obligate, migratory songbird. Mol Ecol 31:5635–5648. https://doi.org/10.1111/mec.16688

    Article  CAS  PubMed  Google Scholar 

  • Hogstad O (1989) The presence of non-territorial males in willow warbler Phylloscopus trochilus populations—a removal study. Ibis 131:263–267

    Article  Google Scholar 

  • Howard H (1920) Territory in bird life. Murray, London

    Book  Google Scholar 

  • Huxley JS (1934) A natural experiment on the territorial instinct. British Birds 27:207–277

    Google Scholar 

  • Jaakkonen T, Kivela SM, Meier CM, Forsman JT (2015) The use and relative importance of intraspecific and interspecific social information in a bird community. Behav Ecol 26:55–64. https://doi.org/10.1093/beheco/aru144

    Article  Google Scholar 

  • Julliard R, Perret P, Blondel J (1996) Reproductive strategies of philopatric and immigrant blue tits. Acta Oecol-Int J Ecol 17:487–501

    Google Scholar 

  • Keddy PA (1989) Competition. Chapman and Hall, London, New York

    Book  Google Scholar 

  • Kempenaers B (1994) Polygyny in the blue tit—Unbalanced sex-ratio and female aggression restrict mate choice. Anim Behav 47:943–957. https://doi.org/10.1006/anbe.1994.1126

    Article  Google Scholar 

  • Kempenaers B (1995) Polygyny in the blue tit—intra-sexual and inter-sexual conflicts. Anim Behav 49:1047–1064. https://doi.org/10.1006/anbe.1995.0134

    Article  Google Scholar 

  • Kempenaers B, Dhondt AA (1991) Competition between blue and great tit for roosting sites in Winter—an aviary experiment. Ornis Scand 22:73–75

    Article  Google Scholar 

  • Kluijver HN (1951) The population ecology of the great tit. Parus m major L Ardea 39:1–135

    Google Scholar 

  • Kluijver HN, Tinbergen L (1953) Territory and the regulation of density in titmice. Arch Néerl De Zool 10:265–289

    Article  Google Scholar 

  • Kluyver HN (1957) Roosting habits, sexual dominance and survival in the great tit. Cold Spring Harb Symp Quant Biol 22:281–285

    Article  Google Scholar 

  • Kluyver HN (1971) Regulation of numbers in populations of great tits (Parus m. major). In: den Boer PJ, Gradwell GR (eds) Proceedings of the Advanced Study Institute on 'Dynamics of Numbers in Populations, Oosterbeek 1970. PUDOC, Wageningen, pp 507–531

  • Knapton RW, Krebs JR (1974) Settlement patterns, territory size, and breeding density in song sparrow (Melospiza melodia). Can J Zool 52:1413–1420

    Article  Google Scholar 

  • Krebs JR (1971) Territory and breeding density in great tit, Parus major L. Ecology 52:2–22

    Article  Google Scholar 

  • Krebs JR (1977) Song and territory in the great tits Parus major. In: Stonehouse B, Perrins CM (eds) Evolutionary Ecology. University Park Press, Baltimore, pp 43–62

    Google Scholar 

  • Lack D (1954) The natural regulation of animal numbers. Clarendon Press, Oxford

    Google Scholar 

  • Lack D (1966) Population studies of birds. Clarendon Press, Oxford

    Google Scholar 

  • Lack D (1971) Ecological isolation in birds. Harvard University Press, Cambridge

    Google Scholar 

  • Lack D, Lack L (1933) Territory review. British Birds 27:179–199

    Google Scholar 

  • Lambrechts M, Dhondt AA (1988) Male quality and territory quality in the great tit Parus major. Anim Behav 36:596–601

    Article  Google Scholar 

  • Law R, Watkinson AR (1989) Competition. In: Cherrett JM (ed) Ecological Concepts. Blackwell Scientific Publications, Oxford, pp 243–284

    Google Scholar 

  • Lebreton JD, Burnham KP, Clobert J, Anderson DR (1992) Modeling survival and testing biological hypotheses using marked animals—a unified approach with case-studies. Ecol Monogr 62:67–118. https://doi.org/10.2307/2937171

    Article  Google Scholar 

  • Leisler B (1992) Habitat selection and coexistence of migrants and Afrotropical residents. Ibis 134:77–82

    Article  Google Scholar 

  • Lindèn M, Gustafsson L, Part T (1992) Selection on fledging mass in the collared flycatcher and the great tit. Ecology 73:336–343

    Article  Google Scholar 

  • Löhrl H (1977) Nistökologische und ethologische anpassungserscheinungen bei höhlenbrütern. Die Vogelwarte 29:92–101

    Google Scholar 

  • MacArthur RH (1958) Population ecology of some warblers of northeastern coniferous forests. Ecology 39:599–619

    Article  Google Scholar 

  • Matthysen E (1990) Nonbreeding social organisation in Parus. In: Power DM (ed) Current Ornithology, vol 7. Plenum Press, New York, pp 209–249

    Google Scholar 

  • Matthysen E, Adriaensen F, Dhondt AA (2001) Local recruitment of great and blue tits (Parus major, P. caeruleus) in relation to study plot size and degree of isolation. Ecography 24:33–42

    Article  Google Scholar 

  • Matthysen E, Adriaensen F, Dhondt AA (2011) Multiple responses to increasing spring temperatures in the breeding cycle of blue and great tits (Cyanistes caeruleus, Parus major). Glob Change Biol 17:1–16. https://doi.org/10.1111/j.1365-2486.2010.02213.x

    Article  Google Scholar 

  • Medina-Estrada J, Remolina-Figueroa D, Ramirez-Bastida P, Vazquez-Reyes LD (2022) Nesting resources availability for cavity adopter birds in a tropical dry forest of Central Mexico. Rev Mex De Biodivers. https://doi.org/10.22201/ib.20078706e.2021.93.3836

    Article  Google Scholar 

  • Minot EO, Perrins CM (1986) Interspecific interference competition—nest sites for blue and great tits. J Anim Ecol 55:331–350

    Article  Google Scholar 

  • Mönkkönen L, Forsman J (2002) Heterospecific attraction among forest birds: a review. Ornithol Sci 1:41–51

    Article  Google Scholar 

  • Mönkkönen M, Helle P, Soppela K (1990) Numerical and behavioral responses of migrant passerines to experimental manipulation of resident tits (Parus spp): heterospecific attraction in northern breeding bird communities. Oecologia 85:218–225

    Article  PubMed  Google Scholar 

  • Moore IT, Vernasco BJ, Escallon C, Small TW, Ryder TB, Horton BM (2019) Tales of testosterone: advancing our understanding of environmental endocrinology through studies of neotropical birds. Gen Comp Endocrinol 273:184–191. https://doi.org/10.1016/j.ygcen.2018.07.003

    Article  CAS  PubMed  Google Scholar 

  • Newton I (1972) Finches. Collins, London

    Google Scholar 

  • Newton I (1992) Experiments on the limitation of bird numbers by territorial behavior. Biol Rev Camb Philos Soc 67:129–173. https://doi.org/10.1111/j.1469-185X.1992.tb01017.x

    Article  Google Scholar 

  • Newton I (1994a) Experiments on the limitation of bird breeding densities—a review. Ibis 136:397–411

    Article  Google Scholar 

  • Newton I (1994b) The role of nest sites in limiting the numbers of hole-nesting birds—a review. Biol Cons 70:265–276

    Article  Google Scholar 

  • Newton I, Wyllie I (1992) Recovery of a sparrowhawk population in relation to declining pesticide contamination. J Appl Ecol 29:476–484. https://doi.org/10.2307/2404515

    Article  CAS  Google Scholar 

  • Newton I, Marquiss M, Rothery P (1983) Age structure and suvival in a sparrowhawk popularion. J Anim Ecol 52:591–602

    Article  Google Scholar 

  • Newton I, Wyllie I, Dale L (1999) Trends in the numbers and mortality patterns of sparrowhawks (Accipiter nisus) and kestrels (Falco tinnunculus) in Britain, as revealed by carcass analyses. J Zool 248:139–147. https://doi.org/10.1111/j.1469-7998.1999.tb01190.x

    Article  Google Scholar 

  • Nice MM (1941) The role of territory in bird life. Am Midl Nat 26:441–487

    Article  Google Scholar 

  • Nicolaus M, Both C, Ubels R, Edelaar P, Tinbergen JM (2009) No experimental evidence for local competition in the nestling phase as a driving force for density-dependent avian clutch size. J Anim Ecol 78:828–838

    Article  PubMed  Google Scholar 

  • Nicolaus M et al (2012) Social environment affects juvenile dispersal in great tits (Parus major). J Anim Ecol 81:827–837. https://doi.org/10.1111/j.1365-2656.2012.01959.x

    Article  PubMed  Google Scholar 

  • Nour N, Currie D, Matthysen E, Van Damme R, Dhondt AA (1998) Effects of habitat fragmentation on provisioning rates, diet and breeding success in two species of tit (great tit and blue tit). Oecologia 114:522–530. https://doi.org/10.1007/s004420050476

    Article  PubMed  Google Scholar 

  • Nur N (1984) The consequences of brood size for breeding blue tits.2. nestling weight, offspring survival and optimal brood size. J Anim Ecol 53:497–517. https://doi.org/10.2307/4530

    Article  Google Scholar 

  • O’Donnell S, Kumar A, Logan CJ (2014) Do nearctic migrant birds compete with residents at army ant raids? A geographic and seasonal analysis. Wilson J Ornithol 126:474–487. https://doi.org/10.1676/13-109.1

    Article  Google Scholar 

  • Opdam P (1979) Feeding ecology of a sparrowhawk population (Accipiter-nisus). Ardea 66:137–155

    Google Scholar 

  • Opdam P, Burgers J, Muskens G (1987) Population trend, reproduction, and pesticides in Dutch sparrowhawks following the ban on DDT. Ardea 75:205–212

    Google Scholar 

  • Parejo D, Aviles JM (2016) Social information use by competitors: resolving the enigma of species coexistence in animals? Ecosphere. https://doi.org/10.1002/ecs2.1295

    Article  Google Scholar 

  • Parejo D, White J, Clobert J, Dreiss A, Danchin E (2007a) Blue tits use fledgling quantity and quality as public information in breeding site choice. Ecology 88:2373–2382

    Article  PubMed  Google Scholar 

  • Parejo D, White J, Danchin E (2007b) Settlement decisions in blue tits: difference in the use of social information according to age and individual success. Naturwissenschaften 94:749–757

    Article  CAS  PubMed  Google Scholar 

  • Parejo D, Danchin E, Silva N, White JF, Dreiss AN, Aviles JM (2008) Do great tits rely on inadvertent social information from blue tits? A habitat selection experiment. Behav Ecol Sociobiol 62:1569–1579

    Article  Google Scholar 

  • Payo-Payo A et al (2018) Predator arrival elicits differential dispersal, change in age structure and reproductive performance in a prey population. Sci Rep 8:1971. https://doi.org/10.1038/s41598-018-20333-0

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Perrins CM (1965) Population fluctuations and clutch-size in the great tit, Parus major L. J Anim Ecol 34:601–647

    Article  Google Scholar 

  • Randler C (2013) Do migrants influence the foraging behaviour of the insectivorous Cyprus Wheatear, Oenanthe cypriaca, at a stopover site? (Aves: Passeriformes). Zool Middle East 59:196–202. https://doi.org/10.1080/09397140.2013.841421

    Article  Google Scholar 

  • Randler C, Teichmann C, Pentzold S (2010) Breeding habitat preference and foraging of the Cyprus Wheatear Oenanthe cypriaca and niche partitioning in comparison with migrant Oenanthe species on Cyprus. J Ornithol 151:113–121

    Article  Google Scholar 

  • Randler C, Pentzold S, Pentzold C (2015) Foraging behaviour of insectivorous migrants and a resident songbird at a stopover site. Biologia 70:141–149. https://doi.org/10.1515/biolog-2015-0015

    Article  Google Scholar 

  • Reynoldson TB, Bellamy PE (1971) The establishement of interspecific competition in field populations, with an example of competition in action between Polycelis nigra (Mull.) and P. tenuis (Ijima) (Turbellaria, Tricladida). In: den Boer J, Gradwell GR (eds) Proceedings of the Advanced Study Institute on 'Dynamics of Numbers in Populations' Oosterbeek 1970. PUDOC, Wageningen, pp 282–297

  • Robles H, Ciudad C, Matthysen E (2012) Responses to experimental reduction and increase of cavities by a secondary cavity-nesting bird community in cavity-rich pyrenean oak forests. For Ecol Manage 277:46–53. https://doi.org/10.1016/j.foreco.2012.04.017

    Article  Google Scholar 

  • Saether BE (1988) Pattern of covariation between life-history traits of European birds. Nature 331:616–617. https://doi.org/10.1038/331616a0

    Article  CAS  PubMed  Google Scholar 

  • Salewski V, Falk KH, Bairlein F, Leisler B (2002) A preliminary assessment of the habitat selection of two Palaearctic migrant passerine species in West Africa. Ostrich 73:114–118. https://doi.org/10.1080/00306525.2002.11446739

    Article  Google Scholar 

  • Salewski V, Bairlein F, Leisler B (2003) Niche partitioning of two Palearctic passerine migrants with Afrotropical residents in their West African winter quarters. Behav Ecol 14:493–502. https://doi.org/10.1093/beheco/arg021

    Article  Google Scholar 

  • Samplonius JM, Both C (2019) Climate change may affect fatal competition between two bird species. Curr Biol 29:327. https://doi.org/10.1016/j.cub.2018.11.063

    Article  CAS  PubMed  Google Scholar 

  • Smith SM (1967) Seasonal changes in the survival of the black-capped chickadee. Condor 69:344–359

    Article  Google Scholar 

  • Smith SM (1978) Underworld in a territorial sparrow—adaptive strategy for floaters. Am Nat 112:571–582

    Article  Google Scholar 

  • Smith SM (1987) Responses of floaters to removal experiments on wintering chickadees. Behav Ecol Sociobiol 20:363–367

    Article  Google Scholar 

  • Sokal RR, Rohlf FJ (1995) Biometry: the principles and practice of statistics in biological research, 3rd edn. Freeman, New York

  • Solomon ME (1971) Elements in the development of population dynamics. In: Den Boer PJ, Gradwell GR (eds) Proceedings of the Advanced Study Institute on 'Dynamics of Numbers in Populations' Oosterbeek 1970. PUDOC, Wageningen. PUDOC, Wageningen

  • Stam CW (1968) Gecoordineerd nestkastenonderzoek in benelux. Het Vogeljaar 16:585–599

    Google Scholar 

  • Stamps JA (1988) Conspecific attraction and aggregation in territorial species. Am Nat 131:329–347

    Article  Google Scholar 

  • Tarazona-Tubens FL, Abadi F, Britt CR, Muschamp M, Desmond MJ (2022) Nest box placement influences occupancy by yellow-headed (Amazona oratrix) and white-fronted (Amazona albifrons) parrots in the pine savannas of Belize. Avian Conserv Ecol. https://doi.org/10.5751/ace-02234-170230

    Article  Google Scholar 

  • Tinbergen JM, Boerlijst MC (1990) Nestling weight and survival in individual great tits (Parus major). J Anim Ecol 59:1113–1127. https://doi.org/10.2307/5035

    Article  Google Scholar 

  • Török J (1993) The predator-prey size hypothesis in 3 assemblages of forest birds. Oecologia 95:474–478

    Article  PubMed  Google Scholar 

  • Török J, Tóth L (1999) Asymmetric competition between two tit species: a reciprocal removal experiment. J Anim Ecol 68:338–345

    Article  Google Scholar 

  • Trautz AC, Illangasekare TH, Rodriguez-Iturbe I (2017) Role of co-occurring competition and facilitation in plant spacing hydrodynamics in water-limited environments. Proc Natl Acad Sci USA 114:9379–9384. https://doi.org/10.1073/pnas.1706046114

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Trevelline BK, Nuttle T, Hoenig BD, Brouwer NL, Porter BA, Latta SC (2018a) DNA metabarcoding of nestling feces reveals provisioning of aquatic prey and resource partitioning among neotropical migratory songbirds in a riparian habitat. Oecologia 187:85–98. https://doi.org/10.1007/s00442-018-4136-0

    Article  PubMed  Google Scholar 

  • Trevelline BK et al (2018b) Stream acidification and reduced aquatic prey availability are associated with dietary shifts in an obligate riparian neotropical migratory songbird. PeerJ 6:1. https://doi.org/10.7717/peerj.5141

    Article  CAS  Google Scholar 

  • Van Noordwijk AJ, Dejong G (1986) Acquisition and allocation of resources - their influence on variation in life-history tactics. Am Nat 128:137–142

    Article  Google Scholar 

  • Van Noordwijk AJ, Van Balen JH, Scharloo W (1980) Heritability of ecologically important traits in the great tit. Ardea 68:193–203

    Google Scholar 

  • Von Haartman L (1969) Nest-size and polygamy in European passerine birds. Ornis Fennica 16:1–12

    Google Scholar 

  • Watson A, Jenkins D (1968) Experiments on population control by territorial behaviour in red grouse. J Anim Ecol 37:595–614

    Article  Google Scholar 

  • Watson A, Miller GR (1971) Territory size and aggression in a fluctuating red grouse population. J Anim Ecol 40:367. https://doi.org/10.2307/3251

    Article  Google Scholar 

  • Wesolowski T (2007) Lessons from long-term hole-nester studies in a primeval temperate forest. J Ornithol 148:S395–S405. https://doi.org/10.1007/s10336-007-0198-1

    Article  Google Scholar 

  • Wesolowski T, Czeszczewik D, Hebda G, Maziarz M, Mitrus C, Rowinski P (2015) 40 years of breeding bird community dynamics in a primeval temperate forest (Bialowieza National Park, Poland). Acta Ornithologica 50:95–120. https://doi.org/10.3161/00016454ao2015.50.1.010

    Article  Google Scholar 

  • Wiens JA (1989) The ecology of bird communities. Cambridge University Press, Cambridge

    Book  Google Scholar 

  • Wolda G (1913) Kultuur van in ’t wild levende vogels. 1912. Tijdschrift over Plantenziekten 19:68–90

    Google Scholar 

  • Zurdo J et al (2023) Dietary niche overlap and resource partitioning among six steppe passerines of Central Spain using DNA metabarcoding. Ibis 165:905

    Article  Google Scholar 

Download references

Acknowledgements

I am very grateful to the multiple colleagues, students and other Ghent and Antwerp staff who over the years have helped with collecting, proofing, discussing and organizing the data. The work would not have been possible without repeated funding by the Belgian National Fund for Scientific Research. I am grateful to the three referees who provided extensive and critical feedback leading to extensive edits.

Funding

Given that this paper is mostly based on published sources any required permissions for work with live animals is reported in those papers. For the same reason no new funding sources were acquired to write this paper. The work would not have been possible without repeated funding by the Belgian National Fund for Scientific Research.

Author information

Authors and Affiliations

Authors

Contributions

AAD conceived and wrote the paper.

Corresponding author

Correspondence to André A. Dhondt.

Ethics declarations

Conflict of interests

 I declare that there are no conflicts of interest.

Additional information

Communicated by Andreas Nord.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dhondt, A.A. Effects of competition and predation operating at individual and population levels: an overview of results from a long-term field experiment. Oecologia 203, 277–296 (2023). https://doi.org/10.1007/s00442-023-05448-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00442-023-05448-0

Keywords

Navigation