Skip to main content
Log in

Spiking the random matrix hard edge

  • Published:
Probability Theory and Related Fields Aims and scope Submit manuscript

Abstract

We characterize the limiting smallest eigenvalue distributions (or hard edge laws) for sample covariance type matrices drawn from a spiked population. In the case of a single spike, the results are valid in the context of the general \(\beta \) ensembles. For multiple spikes, the necessary construction restricts matters to real, complex or quaternion (\(\beta =1,2,\) or 4) ensembles. The limit laws are described in terms of random integral operators, and partial differential equations satisfied by the corresponding distribution functions are derived as corollaries. We also show that, under a natural limit, all spiked hard edge laws derived here degenerate to the critically spiked soft edge laws (or deformed Tracy–Widom laws). The latter were first described at \(\beta =2\) by Baik, Ben Arous, and Peché (Ann Probab 33:1643–1697, 2005), and from a unified \(\beta \) random operator point of view by Bloemendal and Virág (Probab Theory Relat Fields 156:795–825, 2013; Ann Probab arXiv:1109.3704, 2011).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Notes

  1. In [19] the generator is denoted by \(-{\mathfrak {G}}\), with \({\mathfrak {G}}^{-1}\) reserved for the Green’s operator. This should’t cause confusion here.

  2. In [19] we also flipped the indexing by conjugating as in \(B \mapsto S B S^{-1}\) with \(S_{ij} = (-1)^i \delta _{i+j - n-1}\). With the benefit of hindsight it is more convenient not to make this extra move.

  3. Throughout we use the convention that exponents of the form \(b \mapsto b^{\alpha {+}}\) or \(b^{\alpha -}\) indicate that the appraisal in question holds for \(\alpha \pm \epsilon \) with any choice of \(\epsilon > 0\). In the present example, [19] reports an exponent of 3 / 4 in the bounding function \(\phi \), but the proof there shows that this can be replaced by anything greater than 1 / 2.

  4. Throughout \([\cdot ]\) denotes the (appropriate) integer part.

  5. This computation is more or less reproduced in [22]. It should be clear afterwards how everything goes through in the quaternion case (in the real case there are no subtleties—the \(\hbox {diag}(Q_x)\) term is not present and the Brownian motion \(B_x\) is isotropic).

  6. Here we are tacitly assuming that the limiting starting point w is finite, if \(a^{-2/3}c - a^{1/3} \rightarrow \infty \) an additional approximation step is needed, but this has been carried out in [19].

References

  1. Baik, J., Ben Arous, G., Péché, S.: Phase transition of the largest eigenvalue for non-null complex sample covariance matrices. Ann. Probab. 33, 1643–1697 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  2. Bauer, G., Kratz, W.: A general oscillation theorem for selfadjoint differential systems with applications to Sturm-Liouville eigenvale problems and quadratic functionals. Rend. Circ. Mat. Palermo (2) 38, 329–370 (1989)

    Article  MathSciNet  Google Scholar 

  3. Bloemendal, A., Virág, B.: Limits of spiked random matrices I. Probab. Theory Relat. Fields 156, 795–825 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  4. Bloemendal, A., Virág, B.: Limits of spiked random matrices II. Ann. Probab. (2011, To appear). arXiv:1109.3704

  5. Borodin, A., Forrester, P.J.: Increasing subsequences and the hard-to-soft transition in matrix ensembles. J. Phys. A Math. Gen. 36, 2963–2982 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  6. Cépa, E., Lépingle, D.: Diffusing particles with electrostatic repulsion. Prob. Theory Relat. Fields 107, 429–449 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  7. Cépa, E., Lépingle, D.: Brownian particles with electrostatic repulsion on the circle: Dyson’s model for unitary random matrices revisted. Esaim Prob. Stat. 5, 203–224 (2001)

    Article  MATH  Google Scholar 

  8. De La Peña, V., Klass, M.J., Lai, T.-L.: Self-normalized processes: exponential inequalities, moment bounds and iterated logarithm laws. Ann. Probab. 32, 1902–1933 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  9. Desrosiers, P., Forrester, P.: Asymptotic correlations for Gaussian and Wishart matrices with external source. Int. Math. Res. Not. 2006, 43, Art. ID 27395 (2006)

  10. Dufresne, D.: The distribution of a perpetuity, with application to risk theory and pension funding. Scand. Actuar. J. 1990, pp. 39–79 (1990)

  11. Dumitriu, I., Edelman, A.: Matrix models for beta ensembles. J. Math. Phys. 43, 5830–5847 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  12. Edelman, A., Sutton, B.: From random matrices to stochastic operators. J. Stat. Phys. 127, 1121–1165 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  13. Forrester, P.J.: Probability densities and distributions for spiked Wishart \(\beta \)-ensembles. Random Matrices Theory Appl. 2, 1350011 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  14. Itô, K., McKean, H.P.: Diffusion processes and their sample paths. Springer-Verlag, Berlin-Heidelberg-New York (1974)

    MATH  Google Scholar 

  15. Ledoux, M.: The concentration of measure phenomenon. In: Math. Surveys Monographs, vol. 89. AMS (2001)

  16. Mo, M.Y.: The rank 1 real spiked model. Commun. Pure Appl. Math. 65, 1528–1638 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  17. Newman, C.: The distribution of Lyapunov exponents: exact results for random matrices. Commun. Math. Phys. 103, 121–126 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  18. Norris, J.R., Rogers, L.C.G., Williams, D.: Brownian motions of ellipsoids. Trans. Am. Math. Soc. 294, 757–765 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  19. Ramírez, J., Rider, B.: Diffusion at the random matrix hard edge. Commun. Math. Phys. 288, 887–906 (Erratum CMP 307, 561–563 (2011)) (2009)

  20. Ramírez, J., Rider, B., Virág, B.: Beta ensembles, stochastic Airy spectrum, and a diffusion. J. Am. Math. Soc. 24, 919–944 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  21. Ramírez, J., Rider, B., Zeitouni, O.: Hard edge tail asymptotics. Electron. Commun. Probab. 16, 741–752 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  22. Rider, B., Valkó, B.: Matrix Dufresne identities. IMRN, vol. 2015 (2015). doi:10.93/imrn/rnv127

  23. Rumanov, I.: Hard edge for \(\beta \)-ensembles and Painlevé III. Int. Math. Res. Not. 2014, 6576–6617 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  24. Rumanov, I.: Painlevé representation of \(\text{ Tracy-Widom }_{\beta }\) for \(\beta =6\). Commun. Math. Phys. 342, 843–868 (2014)

    Article  MathSciNet  Google Scholar 

  25. Simon, B.: Trace ideals and their applications (second edition). In: Math. Surveys and Monographs, vol. 120. AMS (2005)

  26. Stroock, D.W., Varadhan, S.R.S.: Multidimensional Diffusion Processes. Springer-Verlag, Berlin-New York (1997)

    Book  MATH  Google Scholar 

  27. Sutton, B.: The stochastic operator approach to random matrix theory, PhD thesis, Massachusetts Institute of Technology (2005)

  28. Tracy, C., Widom, H.: Level spacing distributions and the Bessel kernel. Commun. Math. Phys. 161, 289–309 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  29. Tracy, C., Widom, H.: Level spacing distributions and the Airy kernel. Commun. Math. Phys. 159, 151–174 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  30. Tracy, C., Widom, H.: On orthogonal and symplectic matrix ensembles. Commun. Math. Phys. 177, 727–754 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  31. Wang, D.: The largest sample eigenvalue distribution in the rank one quaternionic spiked model of Wishart ensemble. Ann. Probab. 37, 1273–1328 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  32. Weidmann, J.: Spectral Theory of Ordinary Differential Operators. Lecture Notes in Mathematics, vol. 1258. Springer, Berlin (1987)

Download references

Acknowledgments

Many thanks to Tom Kurtz, Benedek Valkó, and Ofer Zeitouni for helpful discussions. Thanks as well to the anonymous referee for a careful and thoughtful review. B.R. was supported in part by NSF Grant DMS-1340489 and Grant 229249 from the Simons Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Brian Rider.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ramírez, J.A., Rider, B. Spiking the random matrix hard edge. Probab. Theory Relat. Fields 169, 425–467 (2017). https://doi.org/10.1007/s00440-016-0733-1

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00440-016-0733-1

Mathematics Subject Classification

Navigation