Skip to main content
Log in

Identification and characterization of a novel 21.6-kDa tegumental protein from Clonorchis sinensis

  • Short Communication
  • Published:
Parasitology Research Aims and scope Submit manuscript

Abstract

Tegumental proteins form a membrane-bound outer surface and are thus involved in host–parasite interactions and parasite survival. A complementary DNA clone encoding a novel 21.6-kDa tegumental protein (CsTegu21.6, accession number JF911532) was identified in a sequence library for the adult Clonorchis sinensis liver fluke. The complete coding sequence was 564 bp and encoded a protein of 188 amino acids. A BLASTX search revealed identities from 43 to 47% with previously identified tegumental proteins in C. sinensis and other helminthic parasites. Multiple alignment of the amino acids of CsTegu21.6 with those of four other C. sinensis tegumental proteins, CsTegu21.1, CsTegu22.3, CsTegu20.8 and CsTegu31.8, revealed pair-wise sequence identities ranging from 24 to 31.8%. A calcium-binding EF-hand domain containing a basic helix–loop–helix structure at the N terminus and a dynein light chain domain at the C terminus were found in CsTegu21.6; these motifs are common in tegumental proteins. CsTegu21.6 was specifically observed on the tegument of adult worms using immunolocalization analysis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

References

  • Abath FG, Werkhauser RC (1996) The tegument of Schistosoma mansoni: functional and immunological features. Parasite Immunol 18(1):15–20

    Article  PubMed  CAS  Google Scholar 

  • Bailey TL, Boden M, Whitington T, Machanick P (2010) The value of position-specific priors in motif discovery using MEME. BMC Bioinforma 11:179. doi:10.1186/1471-2105-11-179

    Article  Google Scholar 

  • Bendtsen JD, Nielsen H, von Heijne G, Brunak S (2004) Improved prediction of signal peptides: signalP 3.0. J Mol Biol 340(4):783–795. doi:10.1016/j.jmb.2004.05.028

    Article  PubMed  Google Scholar 

  • Bouvard V et al (2009) A review of human carcinogens—Part B: biological agents. Lancet Oncol 10:321–322

    Article  PubMed  Google Scholar 

  • Bryson K, McGuffin LJ, Marsden RL, Ward JJ, Sodhi JS, Jones DT (2005) Protein structure prediction servers at University College London. Nucleic Acids Res 33(Web Server issue):W36–W38. doi:10.1093/nar/gki410

    Article  PubMed  CAS  Google Scholar 

  • Bueding E (1975) Dissociation of mutagenic and other toxic properties from schistosomicides. J Toxicol Environ Health 1(2):329–334

    Article  PubMed  CAS  Google Scholar 

  • Chen J et al (2011) Cloning and expression of 21.1-kDa tegumental protein of Clonorchis sinensis and human antibody response to it as a trematode-nematode pan-specific serodiagnosis antigen. Parasitol Res 108(1):161–168. doi:10.1007/s00436-010-2050-4

    Article  PubMed  Google Scholar 

  • Emanuelsson O, Nielsen H, Brunak S, von Heijne G (2000) Predicting subcellular localization of proteins based on their N-terminal amino acid sequence. J Mol Biol 300(4):1005–1016. doi:10.1006/jmbi.2000.3903

    Article  PubMed  CAS  Google Scholar 

  • Gasteiger E et al (2005) Protein identification and analysis tools on the ExPASy server. In: Walker JM (ed) The proteomics protocols handbook. Humana, New York, pp 571–607

    Chapter  Google Scholar 

  • Hoffmann KF, Strand M (1997) Molecular characterization of a 20.8-kDa Schistosoma mansoni antigen. Sequence similarity to tegumental associated antigens and dynein light chains. J Biol Chem 272(23):14509–14515

    Article  PubMed  CAS  Google Scholar 

  • Huang Y et al (2007) A novel tegumental protein 31.8 kDa of Clonorchis sinensis: sequence analysis, expression, and immunolocalization. Parasitol Res 102(1):77–81. doi:10.1007/s00436-007-0728-z

    Article  PubMed  Google Scholar 

  • Ju JW et al (2009) Identification of a serodiagnostic antigen, legumain, by immunoproteomic analysis of excretory–secretory products of Clonorchis sinensis adult worms. Proteomics 9(11):3066–3078. doi:10.1002/pmic.200700613

    Article  PubMed  CAS  Google Scholar 

  • Keiser J, Utzinger J (2005) Emerging foodborne trematodiasis. Emerg Infect Dis 11(10):1507–1514

    Article  PubMed  Google Scholar 

  • Larkin MA et al (2007) Clustal W and Clustal X version 2.0. Bioinformatics 23(21):2947–2948. doi:10.1093/bioinformatics/btm404

    Article  PubMed  CAS  Google Scholar 

  • Larsen JE, Lund O, Nielsen M (2006) Improved method for predicting linear B-cell epitopes. Immunome Res 2:2. doi:10.1186/1745-7580-2-2

    Article  PubMed  Google Scholar 

  • Loukas A, Tran M, Pearson MS (2007) Schistosome membrane proteins as vaccines. Int J Parasitol 37(3–4):257–263. doi:10.1016/j.ijpara.2006.12.001

    Article  PubMed  CAS  Google Scholar 

  • Mehlhorn H (ed) (2001) Encyclopedic reference of parasitology, 2nd edn. Springer, New York, pp 510–519

    Google Scholar 

  • Min XJ, Butler G, Storms R, Tsang A (2005) OrfPredictor: predicting protein-coding regions in EST-derived sequences. Nucleic Acids Res 33(Web Server issue):W677–W680. doi:10.1093/nar/gki394

    Article  PubMed  CAS  Google Scholar 

  • Mohamed MM, Shalaby KA, LoVerde PT, Karim AM (1998) Characterization of Sm20.8, a member of a family of schistosome tegumental antigens. Mol Biochem Parasitol 96(1–2):15–25

    Article  PubMed  CAS  Google Scholar 

  • Mulvenna J et al (2010) Exposed proteins of the Schistosoma japonicum tegument. Int J Parasitol 40(5):543–554. doi:10.1016/j.ijpara.2009.10.002

    Article  PubMed  CAS  Google Scholar 

  • Pei J, Tang M, Grishin NV (2008) PROMALS3D web server for accurate multiple protein sequence and structure alignments. Nucleic Acids Res 36(Web Server issue):W30–W34. doi:10.1093/nar/gkn322

    Article  PubMed  CAS  Google Scholar 

  • Quevillon E et al (2005) InterProScan: protein domains identifier. Nucleic Acids Res 33(Web Server issue):W116–W120. doi:10.1093/nar/gki442

    Article  PubMed  CAS  Google Scholar 

  • Rim HJ (2005) Clonorchiasis: an update. J Helminthol 79(3):269–281

    Article  PubMed  Google Scholar 

  • Tamura K, Peterson D, Peterson N, Stecher G, Nei M, Kumar S (2011) MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol Biol Evol. doi:10.1093/molbev/msr121

  • Van Hellemond JJ et al (2006) Functions of the tegument of schistosomes: clues from the proteome and lipidome. Int J Parasitol 36(6):691–699. doi:10.1016/j.ijpara.2006.01.007

    Article  PubMed  Google Scholar 

  • Wang KX, Zhang RB, Cui YB, Tian Y, Cai R, Li CP (2004) Clinical and epidemiological features of patients with clonorchiasis. World J Gastroenterol 10(3):446–448

    PubMed  Google Scholar 

  • Wiest PM, Tartakoff AM, Aikawa M, Mahmoud AA (1988) Inhibition of surface membrane maturation in schistosomula of Schistosoma mansoni. Proc Natl Acad Sci U S A 85(11):3825–3829

    Article  PubMed  CAS  Google Scholar 

  • Yoo WG et al (2011) Developmental transcriptomic features of the carcinogenic liver fluke, Clonorchis sinensis. PLoS Negl Trop Dis 5(6):1–14

    Article  Google Scholar 

  • Yu SH, Kawanaka M, Li XM, Xu LQ, Lan CG, Rui L (2003) Epidemiological investigation on Clonorchis sinensis in human population in an area of South China. Jpn J Infect Dis 56(4):168–171

    PubMed  Google Scholar 

  • Zhou Z et al (2007) Molecular cloning and identification of a novel Clonorchis sinensis gene encoding a tegumental protein. Parasitol Res 101(3):737–742. doi:10.1007/s00436-007-0541-8

    Article  PubMed  Google Scholar 

  • Zhou Z et al (2008) Oral administration of a Bacillus subtilis spore-based vaccine expressing Clonorchis sinensis tegumental protein 22.3 kDa confers protection against Clonorchis sinensis. Vaccine 26(15):1817–1825. doi:10.1016/j.vaccine.2008.02.015

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by a grant from the Pathogenic Proteome Management Program of the National Institute of Health, Ministry of Health and Welfare, Republic of Korea (NIH 48004847–300).

Competing interests

The authors have declared that no competing interests exist.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jung-Won Ju.

Additional information

Yu-Jung Kim and Won Gi Yoo contributed equally to this study.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary Figure 1

The sequence and structure of CsTegu21.6. a The cDNA and deduced amino acid sequences of CsTegu21.6 are shown. The shaded fragment indicates the EF-hand domain, and the underlined fragment represents the dynein light chain domain. The four B-cell epitopes are displayed in bold. b The 3D-structure of CsTegu21.6 was predicted using SWISS-MODEL and was visualized using PyMOL. The epitopes are colored in red (PPT 432 kb)

Supplementary Figure 2

Expression and purification of rCsTegu21.6. rCsTegu21.6 expression in E. coli BL21(DE3) was verified by 12% SDS–PAGE followed by Coomassie blue staining and western blot analysis with an anti-polyhistidine antibody. Lane 1, molecular weight marker; lane 2, E. coli prior to induction; lane 3, E. coli induced with IPTG; lane 4, flow through; lanes 5 and 6, purified recombinant proteins (PPT 244 kb)

Supplementary Table 1

LC–MS/MS identification of rCsTegu21.6 (DOC 31 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kim, YJ., Yoo, W.G., Lee, MR. et al. Identification and characterization of a novel 21.6-kDa tegumental protein from Clonorchis sinensis . Parasitol Res 110, 2061–2066 (2012). https://doi.org/10.1007/s00436-011-2681-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00436-011-2681-0

Keywords

Navigation