Skip to main content

Advertisement

Log in

Morphological phenotyping and genetic analyses of a new chemical-mutagenized population of tobacco (Nicotiana tabacum L.)

  • Original Article
  • Published:
Planta Aims and scope Submit manuscript

Abstract

Main conclusion

A novel tobacco mutant library was constructed, screened, and characterized as a crucial genetic resource for functional genomics and applied research.

A comprehensive mutant library is a fundamental resource for investigating gene functions, especially after the completion of genome sequencing. A new tobacco mutant population induced by ethyl methane sulfonate mutagenesis was developed for functional genomics applications. We isolated 1607 mutant lines and 8610 mutant plants with altered morphological phenotypes from 5513 independent M2 families that consisted of 69,531 M2 plants. The 2196 mutations of abnormal phenotypes in the M2 putative mutants were classified into four groups with 17 major categories and 51 subcategories. More than 60% of the abnormal phenotypes observed fell within the five major categories including plant height, leaf shape, leaf surface, leaf color, and flowering time. The 465 M2 mutants exhibited multiple phenotypes, and 1054 of the 2196 mutations were pleiotropic. Verification of the phenotypes in advanced generations indicated that 70.63% of the M3 lines, 84.87% of the M4 lines, and 95.75% of the M5 lines could transmit original mutant phenotypes of the corresponding M2, M3, and M4 mutant plants. Along with the increased generation of mutants, the ratios of lines inheriting OMPs increased and lines with emerging novel mutant phenotypes decreased. Genetic analyses of 18 stably heritable mutants showed that two mutants were double recessive, five were monogenic recessive, eight presented monogenic dominant inheritance, and three presented semi-dominant inheritance. The pleiotropy pattern, saturability evaluation, research prospects of genome, and phenome of the mutant populations were also discussed. Simultaneously, this novel mutant library provided a fundamental resource for investigating gene functions in tobacco.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Abbreviations

EMS:

Ethyl methane sulfonate

LD:

Lethal dose

NMP:

Novel mutant phenotype

OMP:

Original mutant phenotype

References

  • Alonso JM, Ecker JR (2006) Moving forward in reverse: genetic technologies to enable genome-wide phenomic screens in Arabidopsis. Nat Rev Genet 7(7):524–536. doi:10.1038/nrg1893

    Article  CAS  PubMed  Google Scholar 

  • Alonso JM, Stepanova AN, Leisse TJ et al (2003) Genome-wide insertional mutagenesis of Arabidopsis thaliana. Science 301(5633):653–657. doi:10.1126/science.1086391

    Article  PubMed  Google Scholar 

  • Andrianov V, Borisjuk N, Pogrebnyak N, Brinker A, Dixon J, Spitsin S, Flynn J, Matyszczuk P, Andryszak K, Laurelli M, Golovkin M, Koprowski H (2010) Tobacco as a production platform for biofuel: overexpression of Arabidopsis DGAT and LEC2 genes increases accumulation and shifts the composition of lipids in green biomass. Plant Biotechnol J 8(3):277–287. doi:10.1111/j.1467-7652.2009.00458.x

    Article  CAS  PubMed  Google Scholar 

  • Arntzen CJ (2008) Using tobacco to treat cancer. Science 321(5892):1052–1053. doi:10.1126/science.1163420

    Article  CAS  PubMed  Google Scholar 

  • Berger B, Parent B, Tester M (2010) High-throughput shoot imaging to study drought responses. J Exp Bot 61(13):3519–3528. doi:10.1093/jxb/erq201

    Article  CAS  PubMed  Google Scholar 

  • Berná G, Robles P, Micol JL (1999) A mutational analysis of leaf morphogenesis in Arabidopsis thaliana. Genetics 152(2):729–742

    PubMed  PubMed Central  Google Scholar 

  • Bindler G, van der Hoeven R, Gunduz I, Plieske J, Ganal M, Rossi L, Gadani F, Donini P (2007) A microsatellite marker based linkage map of tobacco. Theor Appl Genet 114(2):341–349. doi:10.1007/s00122-006-0437-5

    Article  CAS  PubMed  Google Scholar 

  • Bindler G, Plieske J, Bakaher N, Gunduz I, Ivanov N, Van der Hoeven R, Ganal M, Donini P (2011) A high density genetic map of tobacco (Nicotiana tabacum L.) obtained from large scale microsatellite marker development. Theor Appl Genet 123(2):219–230. doi:10.1007/s00122-011-1578-8

    Article  PubMed  PubMed Central  Google Scholar 

  • Bolger A, Scossa F, Bolger ME et al (2014) The genome of the stress-tolerant wild tomato species Solanum pennellii. Nat Genet 46(9):1034–1038. doi:10.1038/ng.3046

    Article  CAS  PubMed  Google Scholar 

  • Bolle C, Schneider A, Leister D (2011) Perspectives on systematic analyses of gene function in Arabidopsis thaliana: new tools, topics and trends. Curr Genom 12(1):1–14. doi:10.2174/138920211794520187

    Article  CAS  Google Scholar 

  • Bombarely A, Rosli HG, Vrebalov J, Moffett P, Mueller LA, Martin GB (2012) A draft genome sequence of Nicotiana benthamiana to enhance molecular plant-microbe biology research. Mol Plant Microbe Interact 25(12):1523–1530. doi:10.1094/MPMI-06-12-0148-TA

    Article  CAS  PubMed  Google Scholar 

  • Bombarely A, Moser M, Amrad A et al (2016) Insight into the evolution of the Solanaceae from the parental genomes of Petunia hybrida. Nat Plants. doi:10.1038/Nplants.2016.74

    PubMed  Google Scholar 

  • Caldwell DG, McCallum N, Shaw P, Muehlbauer GJ, Marshall DF, Waugh R (2004) A structured mutant population for forward and reverse genetics in Barley (Hordeum vulgare L.). Plant J 40(1):143–150. doi:10.1111/j.1365-313X.2004.02190.x

    Article  CAS  PubMed  Google Scholar 

  • Chang Y, Long T, Wu C (2012) Effort and contribution of T-DNA Insertion mutant library for rice functional genomics research in China: review and perspective. J Integr Plant Biol 54(12):953–966. doi:10.1111/j.1744-7909.2012.01171.x

    Article  CAS  PubMed  Google Scholar 

  • Dadras AR, Sabouri H, Nejad GM, Sabouri A, Shoai-Deylami M (2014) Association analysis, genetic diversity and structure analysis of tobacco based on AFLP markers. Mol Biol Rep 41(5):3317–3329. doi:10.1007/s11033-014-3194-6

    Article  CAS  PubMed  Google Scholar 

  • Finkel E (2009) With ‘phenomics’, plant scientists hope to shift breeding into overdrive. Science 325(5939):380–381. doi:10.1126/science.325_380

    Article  CAS  PubMed  Google Scholar 

  • Fricano A, Bakaher N, Del Corvo M, Piffanelli P, Donini P, Stella A, Ivanov NV, Pozzi C (2012) Molecular diversity, population structure, and linkage disequilibrium in a worldwide collection of tobacco (Nicotiana tabacum L.) germplasm. BMC Genet 13:18. doi:10.1186/1471-2156-13-18

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fuchs J, Neuberger T, Rolletschek H, Schiebold S, Nguyen TH, Borisjuk N, Börner A, Melkus G, Jakob P, Borisjuk L (2013) A noninvasive platform for imaging and quantifying oil storage in submillimeter tobacco seed. Plant Physiol 161(2):583–593. doi:10.1104/pp.112.210062

    Article  CAS  PubMed  Google Scholar 

  • Furbank RT, Tester M (2011) Phenomics-technologies to relieve the phenotyping bottleneck. Trends Plant Sci 16(12):635–644. doi:10.1016/j.tplants.2011.09.005

    Article  CAS  PubMed  Google Scholar 

  • Gilchrist EJ, Haughn GW (2005) TILLING without a plough: a new method with applications for reverse genetics. Curr Opin Plant Biol 8(2):211–215. doi:10.1016/j.pbi.2005.01.004

    Article  CAS  PubMed  Google Scholar 

  • Greene EA, Codomo CA, Taylor NE, Henikoff JG, Till BJ, Reynolds SH, Enns LC, Burtner C, Johnson JE, Odden AR, Comai L, Henikoff S (2003) Spectrum of chemically induced mutations from a large-scale reverse-genetic screen in Arabidopsis. Genetics 164(2):731–740

    CAS  PubMed  PubMed Central  Google Scholar 

  • Grosskinsky DK, Pieruschka R, Svensgaard J, Rascher U, Christensen S, Schurr U, Roitsch T (2015) Phenotyping in the fields: dissecting the genetics of quantitative traits and digital farming. New Phytol 207(4):950–952. doi:10.1111/nph.13529

    Article  PubMed  Google Scholar 

  • Hirakawa H, Shirasawa K, Miyatake K, Nunome T, Negoro S, Ohyama A, Yamaguchi H, Sato S, Isobe S, Tabata S, Fukuoka H (2014) Draft genome sequence of eggplant (Solanum melongena L.): the representative solanum species indigenous to the old world. DNA Res 21(6):649–660. doi:10.1093/dnares/dsu027

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jansen M, Gilmer F, Biskup B, Nagel KA, Rascher U, Fischbach A, Briem S, Dreissen G, Tittmann S, Braun S, De Jaeger I, Metzlaff M, Schurr U, Scharr H, Walter A (2009) Simultaneous phenotyping of leaf growth and chlorophyll fluorescence via GROWSCREEN FLUORO allows detection of stress tolerance in Arabidopsis thaliana and other rosette plants. Funct Plant Biol 36(10–11):902–914. doi:10.1071/FP09095

    Article  CAS  Google Scholar 

  • Kim S, Park M, Yeom SI et al (2014) Genome sequence of the hot pepper provides insights into the evolution of pungency in Capsicum species. Nat Genet 46(3):270–278. doi:10.1038/ng.2877

    Article  CAS  PubMed  Google Scholar 

  • Kuromori T, Takahashi S, Kondou Y, Shinozaki K, Matsui M (2009) Phenome analysis in plant species using loss-of-function and gain-of-function mutants. Plant Cell Physiol 50(7):1215–1231. doi:10.1093/pcp/pcp078

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lein W, Usadel B, Stitt M, Reindl A, Ehrhardt T, Sonnewald U, Börnke F (2008) Large-scale phenotyping of transgenic tobacco plants (Nicotiana tabacum) to identify essential leaf functions. Plant Biotechnol J 6(3):246–263. doi:10.1111/j.1467-7652.2007.00313.x

    Article  CAS  PubMed  Google Scholar 

  • Leitch IJ, Hanson L, Lim KY, Kovarik A, Chase MW, Clarkson JJ, Leitch AR (2008) The ups and downs of genome size evolution in polyploid species of Nicotiana (Solanaceae). Ann Bot 101(6):805–814. doi:10.1093/aob/mcm326

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liu F, Gong D, Zhang Q, Wang D, Cui M, Zhang Z, Liu G, Wu J, Wang Y (2015) High-throughput generation of an activation-tagged mutant library for functional genomic analyses in tobacco. Planta 241(3):629–640. doi:10.1007/s00425-014-2186-z

    Article  CAS  PubMed  Google Scholar 

  • Marché L, Valette S, Grenier E, Mugniéry D (2001) Intra-species DNA polymorphism in the tobacco cyst-nematode complex (Globodera tabacum) using AFLP. Genome 44(6):941–946. doi:10.1139/gen-44-6-941

    PubMed  Google Scholar 

  • Menda N, Semel Y, Peled D, Eshed Y, Zamir D (2004) In silico screening of a saturated mutation library of tomato. Plant J 38(5):861–872. doi:10.1111/j.1365-313X.2004.02088.x

    Article  CAS  PubMed  Google Scholar 

  • Minoia S, Petrozza A, D’Onofrio O, Piron F, Mosca G, Sozio G, Cellini F, Bendahmane A, Carriero F (2010) A new mutant genetic resource for tomato crop improvement by TILLING technology. BMC Res Notes 3:69. doi:10.1186/1756-0500-3-69

    Article  PubMed  PubMed Central  Google Scholar 

  • Munns R, James RA, Sirault XR, Furbank RT, Jones HG (2010) New phenotyping methods for screening wheat and barley for beneficial responses to water deficit. J Exp Bot 61(13):3499–3507. doi:10.1093/jxb/erq199

    Article  CAS  PubMed  Google Scholar 

  • O’Malley RC, Ecker JR (2010) Linking genotype to phenotype using the Arabidopsis unimutant collection. Plant J 61(6):928–940. doi:10.1111/j.1365-313X.2010.04119.x

    Article  PubMed  Google Scholar 

  • Oellrich A, Walls RL, Cannon EK, Cannon SB, Cooper L, Gardiner J, Gkoutos GV, Harper L, He M, Hoehndorf R, Jaiswal P, Kalberer SR, Lloyd JP, Meinke D, Menda N, Moore L, Nelson RT, Pujar A, Lawrence CJ, Huala E (2015) An ontology approach to comparative phenomics in plants. Plant Methods 11:10. doi:10.1186/s13007-015-0053-y

    Article  PubMed  PubMed Central  Google Scholar 

  • Potato Genome Consortium (2011) Genome sequence and analysis of the tuber crop potato. Nature 475(7355):189–195. doi:10.1038/nature10158

    Article  Google Scholar 

  • Rosso MG, Li Y, Strizhov N, Reiss B, Dekker K, Weisshaar B (2003) An Arabidopsis thaliana T-DNA mutagenized population (GABI-Kat) for flanking sequence tag-based reverse genetics. Plant Mol Biol 53(1–2):247–259. doi:10.1023/B:PLAN.0000009297.37235.4a

    Article  CAS  PubMed  Google Scholar 

  • Saito T, Ariizumi T, Okabe Y, Asamizu E, Hiwasa-Tanase K, Fukuda N, Mizoguchi T, Yamazaki Y, Aoki K, Ezura H (2011) TOMATOMA: a novel tomato mutant database distributing Micro-Tom mutant collections. Plant Cell Physiol 52(2):283–296. doi:10.1093/pcp/pcr004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sessions A, Burke E, Presting G, Aux G, McElver J, Patton D, Dietrich B, Ho P, Bacwaden J, Ko C, Clarke JD, Cotton D, Bullis D, Snell J, Miguel T, Hutchison D, Kimmerly B, Mitzel T, Katagiri F, Glazebrook J, Law M, Goff SA (2002) A high-throughput Arabidopsis reverse genetics system. Plant Cell 14(12):2985–2994. doi:10.1105/tpc.004630

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sierro N, Battey JN, Ouadi S, Bovet L, Goepfert S, Bakaher N, Peitsch MC, Ivanov NV (2013) Reference genomes and transcriptomes of Nicotiana sylvestris and Nicotiana tomentosiformis. Genome Biol 14(6):R60. doi:10.1186/gb-2013-14-6-r60

    Article  PubMed  PubMed Central  Google Scholar 

  • Sierro N, Battey JN, Ouadi S, Bakaher N, Bovet L, Willig A, Goepfert S, Peitsch MC, Ivanov NV (2014) The tobacco genome sequence and its comparison with those of tomato and potato. Nat Commun 5:3833. doi:10.1038/ncomms4833

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sirault XRR, James RA, Furbank RT (2009) A new screening method for osmotic component of salinity tolerance in cereals using infrared thermography. Funct Plant Biol 36(10–11):970–977. doi:10.1071/FP09182

    Article  CAS  Google Scholar 

  • Till BJ, Reynolds SH, Greene EA, Codomo CA, Enns LC, Johnson JE, Burtner C, Odden AR, Young K, Taylor NE, Henikoff JG, Comai L, Henikoff S (2003) Large-scale discovery of induced point mutations with high-throughput TILLING. Genome Res 13(3):524–530. doi:10.1101/gr.977903

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Till BJ, Cooper J, Tai TH, Colowit P, Greene EA, Henikoff S, Comai L (2007) Discovery of chemically induced mutations in rice by TILLING. BMC Plant Biol 7:19. doi:10.1186/1471-2229-7-19

    Article  PubMed  PubMed Central  Google Scholar 

  • Tomato Genome Consortium (2012) The tomato genome sequence provides insights into fleshy fruit evolution. Nature 485(7400):635–641. doi:10.1038/nature11119

    Article  Google Scholar 

  • Tong ZJ, Jiao TL, Wang FQ, Li MY, Leng XD, Gao YL, Li YP, Xiao BG, Wu WR (2012a) Mapping of quantitative trait loci conferring resistance to brown spot in flue-cured tobacco (Nicotiana tabacum L.). Plant Breed 131(2):335–339. doi:10.1111/j.1439-0523.2011.01940.x

    Article  CAS  Google Scholar 

  • Tong ZJ, Yang ZM, Chen XJ, Jiao FC, Li XY, Wu XF, Gao YL, Xiao BG, Wu WR (2012b) Large-scale development of microsatellite markers in Nicotiana tabacum and construction of a genetic map of flue-cured tobacco. Plant Breed 131(5):674–680. doi:10.1111/j.1439-0523.2012.01984.x

    Article  CAS  Google Scholar 

  • Tsai H, Howell T, Nitcher R, Missirian V, Watson B, Ngo KJ, Lieberman M, Fass J, Uauy C, Tran RK, Khan AA, Filkov V, Tai TH, Dubcovsky J, Comai L (2011) Discovery of rare mutations in populations: TILLING by sequencing. Plant Physiol 156(3):1257–1268. doi:10.1104/pp.110.169748

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tsai H, Missirian V, Ngo KJ, Tran RK, Chan SR, Sundaresan V, Comai L (2013) Production of a high-efficiency TILLING population through polyploidization. Plant Physiol 161(4):1604–1614. doi:10.1104/pp.112.213256

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vanhercke T, El Tahchy A, Liu Q, Zhou XR, Shrestha P, Divi UK, Ral JP, Mansour MP, Nichols PD, James CN, Horn PJ, Chapman KD, Beaudoin F, Ruiz-López N, Larkin PJ, de Feyter RC, Singh SP, Petrie JR (2014) Metabolic engineering of biomass for high energy density: oilseed-like triacylglycerol yields from plant leaves. Plant Biotechnol J 12(2):231–239. doi:10.1111/pbi.12131

    Article  CAS  PubMed  Google Scholar 

  • Wang JW, Jiang CH, Song ZM, Zhang L, Wang L, Wang YY, Liu GS (2011) Mutagenic effects of ethyl methane sulfonate on flue-cured tobacco seeds. Chin Tob Sci 32(3):5. doi:10.3969/j.issn.1007-5119.2011.03.004

    Google Scholar 

  • Wang N, Long T, Yao W, Xiong L, Zhang Q, Wu C (2013) Mutant resources for the functional analysis of the rice genome. Mol Plant 6(3):596–604. doi:10.1093/mp/sss142

    Article  CAS  PubMed  Google Scholar 

  • Warnasooriya SN, Montgomery BL (2014) Using transgenic modulation of protein synthesis and accumulation to probe protein signaling networks in Arabidopsis thaliana. Plant Signal Behav 6(9):1312–1321. doi:10.4161/psb.6.9.16437

    Article  Google Scholar 

  • Wilson-Sánchez D, Rubio-Díaz S, Muñoz-Viana R, Pérez-Pérez JM, Jover-Gil S, Ponce MR, Micol JL (2014) Leaf phenomics: a systematic reverse genetic screen for Arabidopsis leaf mutants. Plant J 79(5):878–891. doi:10.1111/tpj.12595

    Article  PubMed  Google Scholar 

  • Wu JL, Wu C, Lei C, Baraoidan M, Bordeos A, Madamba MR, Ramos-Pamplona M, Mauleon R, Portugal A, Ulat VJ, Bruskiewich R, Wang G, Leach J, Khush G, Leung H (2005) Chemical- and irradiation-induced mutants of indica rice IR64 for forward and reverse genetics. Plant Mol Biol 59(1):85–97. doi:10.1007/s11103-004-5112-0

    Article  CAS  PubMed  Google Scholar 

  • Wu F, Eannetta NT, Xu Y, Plieske J, Ganal M, Pozzi C, Bakaher N, Tanksley SD (2010) COSII genetic maps of two diploid Nicotiana species provide a detailed picture of synteny with tomato and insights into chromosome evolution in tetraploid N. tabacum. Theor Appl Genet 120(4):809–827. doi:10.1007/s00122-009-1206-z

    Article  PubMed  Google Scholar 

  • Wu Q, Wu X, Zhang X, Jiang C, Xiao B, Zhang Y, Wang Y, Liu G (2014) Mapping of two white stem genes in tetraploid common tobacco (Nicotiana tabacum L.). Mol Breed 34(3):1065–1074. doi:10.1007/s11032-014-0097-0

  • Xiao B, Tan Y, Long N, Chen X, Tong Z, Dong Y, Li Y (2015) SNP-based genetic linkage map of tobacco (Nicotiana tabacum L.) using next-generation RAD sequencing. J Biol Res (Thessalon) 22:11. doi:10.1186/s40709-015-0034-3

  • Xin Z, Wang ML, Barkley NA, Burow G, Franks C, Pederson G, Burke J (2008) Applying genotyping (TILLING) and phenotyping analyses to elucidate gene function in a chemically induced sorghum mutant population. BMC Plant Biol 8:103. doi:10.1186/1471-2229-8-103

    Article  PubMed  PubMed Central  Google Scholar 

  • Yang W, Duan L, Chen G, Xiong L, Liu Q (2013) Plant phenomics and high-throughput phenotyping: accelerating rice functional genomics using multidisciplinary technologies. Curr Opin Plant Biol 16(2):180–187. doi:10.1016/j.pbi.2013.03.005

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank the members of The Agricultural Science and Technology Innovation Programs (ASTIP-TRIC01, ASTIP-TRIC02) who assisted with the mutant collection and characterization. This work was financially supported by the China Tobacco Genome Project [Grant Nos. 110201101009 (JY-03), 110201201004 (JY-04), and 110201301005 (JY-05)] and The Agricultural Science and Technology Innovation Program (ASTIP-TRIC02).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Guanshan Liu or Yuanying Wang.

Ethics declarations

Conflict of interest

The authors declare that they have no conflicts of interest.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, D., Wang, S., Chao, J. et al. Morphological phenotyping and genetic analyses of a new chemical-mutagenized population of tobacco (Nicotiana tabacum L.). Planta 246, 149–163 (2017). https://doi.org/10.1007/s00425-017-2690-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00425-017-2690-z

Keywords

Navigation