Skip to main content
Log in

miRNA expression during prickly pear cactus fruit development

  • Original Article
  • Published:
Planta Aims and scope Submit manuscript

Abstract

miRNAs are a class of small non-coding RNAs that regulate gene expression. They are involved in the control of many developmental processes, including fruit development. The increasing amount of information on miRNAs, on their expression, abundance, and conservation between various species, provides a new opportunity to study the role of miRNAs in non-model plant species. In this work, we used a combination of Northern blot and tissue print hybridization analysis to identify conserved miRNAs expressed during prickly pear cactus (Opuntia ficus indica) fruit development. Comparative profiling detected the expression of 34 miRNAs, which were clustered in three different groups that were associated with the different phases of fruit development. Variation in the level of miRNA expression was observed. Gradual expression increase of several miRNAs was observed during fruit development, including miR164. miR164 was selected for stem-loop RT-PCR and for a detailed spatial–temporal expression analysis. At early floral stages, miR164 was mainly localized in meristematic tissues, boundaries and fusion zones, while it was more homogenously expressed in fruit tissues. Our results provide the first evidence of miRNA expression in the prickly pear cactus and provide the basis for future research on miRNAs in Opuntia. Moreover, our analyses suggest that miR164 plays different roles during prickly pear cactus fruit development.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Abbreviations

sRNA:

Small RNA

miRNA:

microRNA

LMW:

Low molecular weight

HMW:

High molecular weight

EDC:

1-Ethyl-3-(3-dimethylaminopropyl) carbodiimide

References

  • Abdel-Ghany SE, Pilon M (2008) MicroRNA-mediated systemic down-regulation of copper protein expression in response to low copper availability in Arabidopsis. J Biol Chem 283:15932–15945

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Achard P, Herr A, Baulcombe DC, Harberd NP (2004) Modulation of floral development by a gibberellin-regulated microRNA. Development 131:3357–3365

    Article  CAS  PubMed  Google Scholar 

  • Adam H, Marguerettaz M, Qadri R et al (2011) Divergent expression patterns of miR164 and CUP-SHAPED COTYLEDON genes in palms and other monocots: implication for the evolution of meristem function in angiosperms. Mol Biol Evol 28:1439–1454

    Article  CAS  PubMed  Google Scholar 

  • Axtell MJ, Bartel DP (2005) Antiquity of microRNAs and their targets in land plants. Plant Cell 17:1658–1673

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Brodersen P, Voinnet O (2006) The diversity of RNA silencing pathways in plants. Trends Genet 22:268–280

    Article  CAS  PubMed  Google Scholar 

  • Brodersen P, Sakvarelidze-Achard L, Bruun-Rasmussen M et al (2008) Widespread translational inhibition by plant miRNAs and siRNAs. Science 320:1185–1190

    Article  CAS  PubMed  Google Scholar 

  • Campos-Guillén J, Cruz-Medina JA, Pastrana-Martinez RG et al (2012) Molecular analysis in prickly pear ripening: an overview. Isr J Plant Sci 60:349–357

    Google Scholar 

  • Carra A, Mica E, Gambino G, Pindo M et al (2009) Cloning and characterization of small non-coding RNAs from grape. Plant J 59:750–763

    Article  CAS  PubMed  Google Scholar 

  • Chavez-Montes RA, Rosas-Cárdenas FF, De Paoli E et al (2014) Sample sequencing of vascular plants demonstrates widespread conservation and divergence of microRNAs. Nat Commun 5(3722):1–15

    Google Scholar 

  • Chen X (2009) Small RNAs and their roles in plant development. Annu Rev Cell Dev Biol 25:21–44

    Article  PubMed  Google Scholar 

  • Chen C, Ridzon D, Broomer AJ, Zhou Z et al (2005) Real-time quantification of microRNAs by stem-loop RT-PCR. Nucleic Acids Res 33:e179

    Article  PubMed Central  PubMed  Google Scholar 

  • Chitwood DH, Guo M, Nogueira FTS, Timmermans MCP (2007) Establishing leaf polarity: the role of small RNAs and positional signals in the shoot apex. Development 134:813–823

    Article  CAS  PubMed  Google Scholar 

  • de Carvalho F, Gheysen G, Kushnir S et al (1992) Suppression of beta-1,3-glucanase transgene expression in homozygous plants. EMBO J 11:2595–2602

    PubMed Central  PubMed  Google Scholar 

  • Delessert C, Kazan K, Wilson IW et al (2005) The transcription factor ATAF2 represses the expression of pathogenesis-related genes in Arabidopsis. Plant J 43:745–757

    Article  CAS  PubMed  Google Scholar 

  • Din M, Younas M, Barozai K (2014) Profiling microRNAs and their targets in an important fleshy fruit: Tomato (Solanum lycopersicum). Gene 535:198–203

    Article  CAS  PubMed  Google Scholar 

  • Dugas DV, Bartel B (2004) MicroRNA regulation of gene expression in plants. Curr Opin Plant Biol 7:512–520

    Article  CAS  PubMed  Google Scholar 

  • Ge A, Shangguan L, Zhang X et al (2013) Deep sequencing discovery of novel and conserved microRNAs in strawberry (Fragaria × ananassa). Physiol Plant 148:387–396

    Article  CAS  PubMed  Google Scholar 

  • Gillaspy G, Ben-David H, Gruissem W, Darwin C (1993) Fruits: a developmental perspective. Plant Cell 5:1439–1451

    Article  PubMed Central  PubMed  Google Scholar 

  • Gonzalez-Ibeas D, Blanca J, Donaire L et al (2011) Analysis of the melon (Cucumis melo) small RNAome by high-throughput pyrosequencing. BMC Genom 12:393

    Article  CAS  Google Scholar 

  • Greco M, Chiappetta A, Bruno L, Bitonti MB (2012) Molecular characterization of banana NAC transcription factors and their interactions with ethylene signalling component EIL during fruit ripening. J Exp Bot 63:695–709

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • He XJ, Mu RL, Cao WH et al (2005) AtNAC2, a transcription factor downstream of ethylene and auxin signaling pathways, is involved in salt stress response and lateral root development. Plant J 44:903–916

    Article  CAS  PubMed  Google Scholar 

  • Irizarry R, Hobbs B, Collin F et al (2003) Exploration, normalization, and summaries of high density oligonucleotide array probe level data. Biostatistics 4:249–264

    Article  PubMed  Google Scholar 

  • Jagadeeswaran G, Zheng Y, Li YF et al (2009) Cloning and characterization of small RNAs from Medicago truncatula reveals four novel legume-specific microRNA families. New Phytol 184:85–98

    Article  CAS  PubMed  Google Scholar 

  • Jones-Rhoades MW, Bartel DP, Bartel B (2006) MicroRNAs and their regulatory roles in plants. Annu Rev Plant Biol 57:19–53

    Article  CAS  PubMed  Google Scholar 

  • Jung JH, Park CM (2007) MIR166/165 genes exhibit dynamic expression patterns in regulating shoot apical meristem and floral development in Arabidopsis. Planta 225:1327–1338

    Article  CAS  PubMed  Google Scholar 

  • Karlova R, Rosin FM, Busscher-Lange J et al (2011) Transcriptome and metabolite profiling show that APETALA2a is a major regulator of tomato fruit ripening. Plant Cell 23:923–941

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Karlova R, van Haarst JC, Maliepaard C et al (2013) Identification of microRNA targets in tomato fruit development using high-throughput sequencing and degradome analysis. J Exp Bot 64:1863–1878

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Kawashima CG, Yoshimoto N, Maruyama-Nakashita A et al (2009) Sulphur starvation induces the expression of microRNA-395 and one of its target genes but in different cell types. Plant J 57:313–321

    Article  CAS  PubMed  Google Scholar 

  • Kim JH, Woo HR, Lim PO et al (2009) Trifurcate feed-forward regulation of age-dependent cell death involving miR164 in Arabidopsis. Science 323:1053–1057

    Article  CAS  PubMed  Google Scholar 

  • Korir NK, Li X, Xin S et al (2013) Characterization and expression profiling of selected microRNAs in tomato (Solanum lycopersicon) “Jiangshu14”. Mol Biol Rep 5:3503–3521

    Article  Google Scholar 

  • Kruszka K, Pieczynski M, Windels D et al (2012) Role of microRNAs and other sRNAs of plants in their changing environments. Plant Physiol 169:1664–1672

    Article  CAS  Google Scholar 

  • Kutter C, Schöb H, Stadler M et al (2007) MicroRNA-mediated regulation of stomatal development in Arabidopsis. Plant Cell 19:2417–2429

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Laufs P, Peaucelle A, Morin H, Traas J (2004) MicroRNA regulation of the CUC genes is required for boundary size control in Arabidopsis meristems. Development 131:4311–4322

    Article  CAS  PubMed  Google Scholar 

  • Li H, Zhang Z, Huang F et al (2009) MicroRNA expression profiles in conventional and micropropagated strawberry (Fragaria × ananassa Duch.) plants. Plant Cell Rep 28:891–902

    Article  CAS  PubMed  Google Scholar 

  • Liu Y-Z, Baig MNR, Fan R et al (2009) Identification and expression pattern of a novel NAM, ATAF, and CUC-like gene from Citrus sinensis Osbeck. Plant Mol Biol Rep 27:292–297

    Article  CAS  Google Scholar 

  • Lopez-Gomollon S, Mohorianu I, Szittya G et al (2012) Diverse correlation patterns between microRNAs and their targets during tomato fruit development indicates different modes of microRNA actions. Planta 236:1875–1887

    Article  CAS  PubMed  Google Scholar 

  • Lu S, Sun Y, Shi R et al (2005) Novel and mechanical stress – responsive microRNAs in Populus trichocarpa that are absent from Arabidopsis. Plant Cell 17:2186–2203

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Luo Q-J, Mittal A, Jia F, Rock CD (2012) An autoregulatory feedback loop involving PAP1 and TAS4 in response to sugars in Arabidopsis. Plant Mol Biol 80:117–129

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Mallory AC, Dugas DV, Bartel DP, Bartel B (2004) MicroRNA regulation of NAC-domain targets is required for proper formation and separation of adjacent embryonic, vegetative, and floral organs. Curr Biol 14:1035–1046

    Article  CAS  PubMed  Google Scholar 

  • Manning K, Tör M, Poole M et al (2006) A naturally occurring epigenetic mutation in a gene encoding an SBP-box transcription factor inhibits tomato fruit ripening. Nat Genet 38:948–952

    Article  CAS  PubMed  Google Scholar 

  • Marin E, Jouannet V, Herz A et al (2010) miR390, Arabidopsis TAS3 tasiRNAs, and their AUXIN RESPONSE FACTOR targets define an autoregulatory network quantitatively regulating lateral root growth. Plant Cell 22:1104–1117

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • McAtee P, Karim S, Schaffer R, David K (2013) A dynamic interplay between phytohormones is required for fruit development, maturation, and ripening. Front Plant Sci 4:79. doi:10.3389/fpls.2013.00079

    Article  PubMed Central  PubMed  Google Scholar 

  • Mohorianu I, Schwach F, Jing R et al (2011) Profiling of short RNAs during fleshy fruit development reveals stage-specific sRNAome expression patterns. Plant J 67:232–246

    Article  CAS  PubMed  Google Scholar 

  • Moxon S, Jing R, Szittya G et al (2008) Deep sequencing of tomato short RNAs identifies microRNAs targeting genes involved in fruit ripening. Gen Res 18:1602–1609

    Article  CAS  Google Scholar 

  • Ni Z, Hu Z, Jiang Q, Zhang H (2013) GmNFYA3, a target gene of miR169, is a positive regulator of plant tolerance to drought stress. Plant Mol Biol 82:113–129

    Article  CAS  PubMed  Google Scholar 

  • Nikovics K, Blein T, Peaucelle A et al (2006) The balance between the MIR164A and CUC2 genes controls leaf margin serration in Arabidopsis. Plant Cell 18:2929–2945

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Palatnik JF, Allen E, Wu X et al (2003) Control of leaf morphogenesis by microRNAs. Nature 425:257–263

    Article  CAS  PubMed  Google Scholar 

  • Pall GS, Hamilton AJ (2008) Improved northern blot method for enhanced detection of small RNA. Nat Protoc 3:1077–1084

    Article  CAS  PubMed  Google Scholar 

  • Pantaleo V, Szittya G, Moxon S et al (2010) Identification of grapevine microRNAs and their targets using high-throughput sequencing and degradome analysis. Plant J 62:960–976

    CAS  PubMed  Google Scholar 

  • Peaucelle A, Morin H, Traas J, Laufs P (2007) Plants expressing a miR164-resistant CUC2 gene reveal the importance of post-meristematic maintenance of phyllotaxy in Arabidopsis. Development 134:1045–1050

    Article  CAS  PubMed  Google Scholar 

  • Pilcher RLR, Moxon S, Pakseresht N et al (2007) Identification of novel small RNAs in tomato (Solanum lycopersicum). Planta 226:709–717

    Article  PubMed  Google Scholar 

  • Pulido A, Laufs P (2010) Co-ordination of developmental processes by small RNAs during leaf development. J Exp Bot 61:1277–1291

    Article  CAS  PubMed  Google Scholar 

  • Reyes-Agüero J, Aguirre JR, Valiente-Banuet A (2006) Reproductive biology of Opuntia: a review. J Arid Environ 64:549–585

    Article  Google Scholar 

  • Rhoades MW, Reinhart BJ, Lim LP et al (2002) Prediction of plant microRNA targets. Cell 110:513–520

    Article  CAS  PubMed  Google Scholar 

  • Rosas-Cárdenas FF, Durán-Figueroa N, Vielle-Calzada JP et al (2011) A simple and efficient method for isolating small RNAs from different plant species. Plant Methods 7:4

    Article  PubMed Central  Google Scholar 

  • Rubio-Somoza I, Weigel D (2011) MicroRNA networks and developmental plasticity in plants. Trends Plant Sci 16:258–264

    Article  CAS  PubMed  Google Scholar 

  • Saeed A, Sharov V, White J, Li J (2003) TM4: a free, open-source system for microarray data management and analysis. Biotechniques 34:374–378

    CAS  PubMed  Google Scholar 

  • Sessions RA, Zambryski PC (1995) Arabidopsis gynoecium structure in the wild type and in ettin mutants. Development 121:1519–1532

    CAS  PubMed  Google Scholar 

  • Sieber P, Wellmer F, Gheyselinck J et al (2007) Redundancy and specialization among plant microRNAs: role of the miR164 family in developmental robustness. Development 134:1051–1060

    Article  CAS  PubMed  Google Scholar 

  • Smyth GK (2005) Limma: linear models for microarray data. In: Gentleman R, Carey V, Dudoit SR, Irizarry WH (eds) Bioinformatics and computational biology solutions using R and Bioconductor. Statistics for Biology and Health, pp 397–420

  • Song C, Fang J, Li X et al (2009) Identification and characterization of 27 conserved microRNAs in citrus. Planta 230:671–685

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Sunkar R, Chinnusamy V, Zhu J, Zhu JK (2007) Small RNAs as big players in plant abiotic stress responses and nutrient deprivation. Trends Plant Sci 12:301–309

    Article  CAS  PubMed  Google Scholar 

  • Trindade I, Capitão C, Dalmay T et al (2010) miR398 and miR408 are up-regulated in response to water deficit in Medicago truncatula. Planta 231:705–716

    Article  CAS  PubMed  Google Scholar 

  • Válóczi A, Várallyay E, Kauppinen S et al (2006) Spatio-temporal accumulation of microRNAs is highly coordinated in developing plant tissues. Plant J 47:140–151

    Article  PubMed  Google Scholar 

  • Vaucheret H, Vazquez F, Crété P, Bartel DP (2004) The action of ARGONAUTE1 in the miRNA pathway and its regulation by the miRNA pathway are crucial for plant development. Genes Dev 18:1187–1197

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Wang C, Han J, Liu C et al (2012) Identification of microRNAs from Amur grape (Vitis amurensis Rupr.) by deep sequencing and analysis of microRNA variations with bioinformatics. BMC Genom 13:122

    Article  CAS  Google Scholar 

  • Wang C, Leng X, Zhang Y (2014) Transcriptome-wide analysis of dynamic variations in regulation modes of grapevine microRNAs on their target genes during grapevine development. Plant Mol Biol 84:269–285

    Article  CAS  PubMed  Google Scholar 

  • Xia R, Zhu H, An YQ et al (2012) Apple miRNAs and tasiRNAs with novel regulatory networks. Genome Biol 13:R47

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Xu Q, Liu Y, Zhu A et al (2010) Discovery and comparative profiling of microRNAs in a sweet orange red-flesh mutant and its wild type. BMC Genom 11:246

    Article  Google Scholar 

  • Xu X, Yin L, Ying Q et al (2013) High-throughput sequencing and degradome analysis identify miRNAs and their targets involved in fruit senescence of Fragaria ananassa. PLoS ONE 8:e70959

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Yoon EK, Yang JH, Lim J et al (2010) Auxin regulation of the microRNA390-dependent transacting small interfering RNA pathway in Arabidopsis lateral root development. Nucleic Acids Res 38:1382–1391

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Zhang X, Zou Z, Zhang J et al (2011) Over-expression of sly-miR156a in tomato results in multiple vegetative and reproductive trait alterations and partial phenocopy of the sft mutant. FEBS Lett 585:435–439

    Article  CAS  PubMed  Google Scholar 

  • Zhao B, Ge L, Liang R et al (2009) Members of miR-169 family are induced by high salinity and transiently inhibit the NF-YA transcription factor. BMC Mol Biol 10:29

    Article  PubMed Central  PubMed  Google Scholar 

  • Zhao M, Ding H, Zhu J et al (2011) Involvement of miR169 in the nitrogen-starvation responses in Arabidopsis. New Phytol 190:906–915

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Zhou M, Li D, Li Z et al (2013) Constitutive expression of a miR319 gene alters plant development and enhances salt and drought tolerance in transgenic creeping bentgrass. Plant Physiol 161:1375–1391

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Zuo J, Zhu B, Fu D et al (2012) Sculpting the maturation, softening and ethylene pathway: the influences of microRNAs on tomato fruits. BMC Genom 13:7

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We would like to thank Dr. Candelario Mondragón-Jacobo at INIFAP Norte de Guanajuato for providing cactus material. We also thank the Mexican National Council of Science and Technology (CONACyT) for a Ph.D. fellowship to FFRC (199450). This work in the de Folter laboratory was financed by the CONACyT Grants 82826 and 177739, and in the Cruz-Hernández lab by the CONACyT Grant 134953.

Conflict of interest

The authors declare no competing interests.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stefan de Folter.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 1738 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rosas-Cárdenas, F.d.F., Caballero-Pérez, J., Gutiérrez-Ramos, X. et al. miRNA expression during prickly pear cactus fruit development. Planta 241, 435–448 (2015). https://doi.org/10.1007/s00425-014-2193-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00425-014-2193-0

Keywords

Navigation