Skip to main content

Advertisement

Log in

Central activation, metabolites, and calcium handling during fatigue with repeated maximal isometric contractions in human muscle

  • Original Article
  • Published:
European Journal of Applied Physiology Aims and scope Submit manuscript

Abstract

Purpose

To determine the roles of calcium (Ca2+) handling by sarcoplasmic reticulum (SR) and central activation impairment (i.e., central fatigue) during fatigue with repeated maximal voluntary isometric contractions (MVC) in human muscles.

Methods

Contractile performance was assessed during 3 min of repeated MVCs (7-s contraction, 3-s rest, n = 17). In ten participants, in vitro SR Ca2+-handling, metabolites, and fibre-type composition were quantified in biopsy samples from quadriceps muscle, along with plasma venous [K+]. In 11 participants, central fatigue was compared using tetanic stimulation superimposed on MVC in quadriceps and adductor pollicis muscles.

Results

The decline of peak MVC force with fatigue was similar for both muscles. Fatigue resistance correlated directly with % type I fibre area in quadriceps (r = 0.77, P = 0.009). The maximal rate of ryanodine-induced Ca2+-release and Ca2+-uptake fell by 31 ± 26 and 28 ± 13%, respectively. The tetanic force depression was correlated with the combined reduction of ATP and PCr, and increase of lactate (r = 0.77, P = 0.009). Plasma venous [K+] increased from 4.0 ± 0.3 to 5.4 ± 0.8 mM over 1–3-min exercise. Central fatigue occurred during the early contractions in the quadriceps in 7 out of 17 participants (central activation ratio fell from 0.98 ± 0.05 to 0.86 ± 0.11 at 1 min), but dwindled at exercise cessation. Central fatigue was seldom apparent in adductor pollicis.

Conclusions

Fatigue with repeated MVC in human limb muscles mainly involves peripheral aspects which include impaired SR Ca2+-handling and we speculate that anaerobic metabolite changes are involved. A faster early force loss in quadriceps muscle with some participants is attributed to central fatigue.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Abbreviations

ANOVA:

Analysis of variance

ATP:

Adenosine triphosphate

[Ca2+]:

Ca2+ concentration

CAR:

Central activation ratio

CF group:

Central fatigue group

CNS:

Central nervous system

Cr:

Creatine

[K+]v :

Plasma venous K+ concentration

MVC:

Maximum voluntary isometric contraction

[Na+]v :

Plasma venous Na+ concentration

NCF group:

Non-central fatigue group

PCr:

Phosphocreatine

Pi :

Inorganic phosphate

PRFD:

Peak rate of force development

PRR:

Peak rate of relaxation

r :

Pearson’s correlation coefficient

SD:

Standard deviation

SR:

Sarcoplasmic reticulum

%ΔSR:

% Change sarcoplasmic reticulum function

References

  • Allen DG, Lamb GD, Westerblad H (2008) Skeletal muscle fatigue: cellular mechanisms. Physiol Rev 88:287–332

    Article  CAS  PubMed  Google Scholar 

  • Allen DG, Clugston E, Petersen Y, Rӧder IV, Chapman B, Rudolf R (2011) Interactions between intracellular calcium and phosphate in intact mouse muscle during fatigue. J Appl Physiol 111:358–366

    Article  CAS  PubMed  Google Scholar 

  • Amann M, Proctor LT, Sebranek JJ, Pegelow DF, Dempsey JA (2009) Opioid-mediated muscle afferents inhibit central motor drive and limit peripheral muscle fatigue development in humans. J Physiol 587(1):271–283

    Article  CAS  PubMed  Google Scholar 

  • Bergstrӧm J (1962) Muscle electrolytes in man. Scand J Clin Lab Invest Suppl 68:1–110

    Google Scholar 

  • Bigland-Ritchie B, Jones DA, Hosking GP, Edwards RHT (1978) Central and peripheral fatigue in sustained maximum voluntary contractions of human quadriceps muscle. Clin Sci Mol Med 54:609–614

    CAS  PubMed  Google Scholar 

  • Bigland-Ritchie B, Johansson R, Lippold OCJ, Woods JJ (1983) Contractile speed and EMG changes during fatigue of sustained maximal voluntary contractions. J Neurophysiol 50:313–324

    CAS  PubMed  Google Scholar 

  • Bilodeau M (2006) Central fatigue in continuous and intermittent contractions of triceps brachii. Muscle Nerve 34:205–213

    Article  PubMed  Google Scholar 

  • Brooke MH, Kaiser KK (1970) Three ‘myosin ATPase’ systems: the nature of their pH lability and sulfhydral dependence. J Histochem Cytochem 18:670–672

    Article  CAS  PubMed  Google Scholar 

  • Burke RE, Levine DN, Tsairis P, Zajac FE (1973) Physiological types and histochemical profiles in motor units of the cat gastrocnemius. J Physiol 234:723–748

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cady EB, Elshove H, Jones DA, Moll A (1989) The metabolic causes of slow relaxation in fatigued human skeletal muscle. J Physiol 418:327–337

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cairns SP (2013) Holistic approaches to understanding mechanisms of fatigue in high-intensity sport. Fatigue Biomed Health Behav 1(2):1–20

    Google Scholar 

  • Cairns SP, Lindinger MI (2008) Do multiple ionic interactions contribute to skeletal muscle fatigue? J Physiol 586(17):4039–4054

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cairns SP, Knicker AJ, Thompson MW, Sjøgaard G (2005) Evaluation of models used to study neuromuscular fatigue. Exerc Sport Sci Rev 33:9–16

    PubMed  Google Scholar 

  • Cairns SP, Taberner AJ, Loiselle DS (2009) Changes of surface and t-tubular membrane excitability during fatigue with repeated tetani in isolated mouse fast- and slow-twitch muscle. J Appl Physiol 106:101–112

    Article  PubMed  Google Scholar 

  • Caron G, Decherchi P, Marqueste T (2015) Does metabosensitive afferent fibers activity differ from slow- and fast-twitch muscles? Exp Brain Res 233:2549–2554

    Article  CAS  PubMed  Google Scholar 

  • Cory CR, McCutcheon LJ, O’Grady M, Pang AW, Geiger JD, O’Brien PJ (1993) Compensatory downregulation of myocardial Ca channel in SR from dogs with heart failure. Am J Physiol 264:H926–H937

    CAS  PubMed  Google Scholar 

  • de Paoli FV, Ørtenblad N, Pedersen TH, Jørgensen R, Nielsen OB (2010) Lactate per se improves the excitability of depolarized rat skeletal muscle by reducing the Cl conductance. J Physiol 588(23):4785–4794

    Article  PubMed  PubMed Central  Google Scholar 

  • Decherchi P, Darques DL, Jammes Y (1998) Modifications of afferent activities from Tibialis anterior muscle in rat by tendon vibrations, increase of interstitial potassium or lactate concentration and electrically-induced fatigue. J Peripher Nerv Syst 3:267–276

    CAS  PubMed  Google Scholar 

  • Duhamel TA, Perco JG, Green HJ (2006) Manipulation of dietary carbohydrates after prolonged effort modifies muscle sarcoplasmic reticulum responses in exercising males. Am J Physiol Regul Integr Comp Physiol 291(4):R1100–R1110

    Article  CAS  PubMed  Google Scholar 

  • Dulhunty AF, Wei-LaPierre L, Casarotto M, Beard NA (2017) Core skeletal muscle ryanodine receptor calcium release complex. Clin Exp Pharmacol Physiol 44:3–12

    Article  CAS  PubMed  Google Scholar 

  • Gejl KD, Hvid LG, Frandsen U, Jensen K, Sahlin K, Ørtenblad N (2014) Muscle glycogen content modifies SR Ca2+ release rate in elite endurance athletes. Med Sci Sports Exerc 46:496–505

    Article  CAS  PubMed  Google Scholar 

  • Gruet M, Temesi J, Rupp T, Levy P, Verges S, Millet GY (2014) Dynamics of corticospinal changes during and after high-intensity quadriceps exercise. Exp Physiol 99(8):1053–1064

    Article  PubMed  Google Scholar 

  • Grynkiewicz G, Poenie M, Tsien RY (1985) A new generation of Ca2+ indicators with greatly improved fluorescence properties. J Biol Chem 260:3440–3450

    CAS  PubMed  Google Scholar 

  • Hamada T, Sale DG, MacDougall JD, Tarnopolsky MA (2003) Interaction of fibre type, potentiation and fatigue in human knee extensor muscles. Acta Physiol Scand 178:165–173

    Article  CAS  PubMed  Google Scholar 

  • Hargreaves M, McKenna MJ, Jenkins DG, Warmington SA, Li JL, Snow RJ, Febbraio MA (1998) Muscle metabolites and performance during high-intensity, intermittent exercise. J Appl Physiol 84:1687–1691

    CAS  PubMed  Google Scholar 

  • Harmer AR, McKenna MJ, Sutton JR, Snow RJ, Ruell PA, Booth J, Thompson MW, MacKay NA, Stathis CG, Crameri RM, Carey MF, Eager DM (2000) Skeletal muscle metabolic and ionic adaptations during intense exercise following sprint training in humans. J Appl Physiol 89:1793–1803

    CAS  PubMed  Google Scholar 

  • Herbert RD, Gandevia SC (1996) Muscle activation in unilateral and bilateral efforts assessed by motor nerve and cortical stimulation. J Appl Physiol 80:1351–1356

    CAS  PubMed  Google Scholar 

  • Herbert RD, Gandevia SC (1999) Twitch interpolation in human muscles: mechanisms and implications for measurement of voluntary activation. J Neurophysiol 82:2271–2283

    CAS  PubMed  Google Scholar 

  • Hill CA, Thompson MW, Ruell PA, Thom JM, White MJ (2001) Sarcoplasmic reticulum function and muscle contractile character following fatiguing exercise in humans. J Physiol 531(3):871–878

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hilty L, Lutz K, Maurer K, Rodenkirch T, Spengler CM, Boutellier U, Jäncke L, Amann M (2011) Spinal opioid receptor-sensitive muscle afferents contribute to the fatigue-induced increase in intracortical inhibition in healthy humans. Exp Physiol 96(5):505–517

    Article  CAS  PubMed  Google Scholar 

  • Hostrup M, Kalsen A, Ørtenblad N, Juel C, Mørch K, Rzeppa S, Karlsson S, Backer V, Bangsbo J (2014) β2-Adrenergic stimulation enhances Ca2+ release and contractile properties of skeletal muscles, and counteracts exercise-induced reductions in Na+–K+-ATPase V max in trained men. J Physiol 502(24):5445–5459

    Article  Google Scholar 

  • Hultman E, Sjöholm H, Jäderholm-Ek I, Krynicki J (1983) Evaluation of methods for electrical stimulation of human skeletal muscle in situ. Pflügers Arch Eur J Physiol 398:139–141

    Article  CAS  Google Scholar 

  • Hunter SK, Butler JE, Todd G, Gandevia SC, Taylor JL (2006) Supraspinal fatigue does not explain the sex difference in muscle fatigue of maximal contractions. J Appl Physiol 101:1036–1044

    Article  PubMed  Google Scholar 

  • Johnson MA, Polgar J, Weightman D, Appleton D (1973) Data on the distribution of fibre types in thirty-six human muscles. An autopsy study. J Neurol Sci 18:111–129

    Article  CAS  PubMed  Google Scholar 

  • Kennedy DS, McNeil CJ, Gandevia SC, Taylor JL (2016) Effects of fatigue on corticospinal excitability of the human knee extensors. Exp Physiol 101(12):1552–1564

    Article  PubMed  Google Scholar 

  • Kent-Braun JA (1999) Central and peripheral contributions to muscle fatigue in humans during sustained maximal effort. Eur J Appl Physiol 80:57–63

    Article  CAS  Google Scholar 

  • Kent-Braun JA, Le Blanc R (1996) Quantification of central activation failure during maximal voluntary contractions in humans. Muscle Nerve 19:861–869

    Article  CAS  PubMed  Google Scholar 

  • Leppik JA, Aughey RJ, Medved I, Fairweather I, Carey MF, McKenna MJ (2004) Prolonged exercise to fatigue in humans impairs skeletal muscle Na+–K+-ATPase activity, sarcoplasmic reticulum Ca2+ release, and Ca2+ uptake. J Appl Physiol 97:1414–1423

    Article  CAS  PubMed  Google Scholar 

  • Li JL, Wang XN, Fraser SF, Carey MF, Wrigley TV, McKenna MJ (2002) Effects of fatigue and training on sarcoplasmic reticulum Ca2+ regulation in human skeletal muscle. J Appl Physiol 92:912–922

    Article  CAS  PubMed  Google Scholar 

  • Lowry OH, Passonneau JV (1971) Some recent refinements of quantitative histochemical analysis. Curr Probl Clin Biochem 3:63–84

    CAS  PubMed  Google Scholar 

  • Markwell MA, Haas SM, Bieber LL, Tolbert NE (1978) A modification of the Lowry procedure to simplify protein determination in membrane and lipoprotein samples. Anal Biochem 87:206–210

    Article  CAS  PubMed  Google Scholar 

  • Medbø JI, Sejersted OM (1990) Plasma potassium changes with high intensity exercise. J Physiol 421:105–122

    Article  PubMed  PubMed Central  Google Scholar 

  • Merton PA (1954) Voluntary strength and fatigue. J Physiol 123:553–564

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nelson CR, Fitts RH (2014) Effects of low cell pH and elevated inorganic phosphate on the pCa–force relationship in single muscle fibers at near-physiological temperatures. Am J Physiol Cell Physiol 306:C670–C678

    Article  CAS  PubMed  Google Scholar 

  • Neyroud D, Rüttimann J, Mannion AF, Millet GY, Maffiuletti NA, Kayser B, Place N (2013) Comparison of neuromuscular adjustments associated with sustained isometric contractions of four different muscle groups. J Appl Physiol 114:1426–1434

    Article  PubMed  Google Scholar 

  • Nielsen JJ, Mohr M, Klarskov C, Kristensen M, Krustrup P, Juel C, Bangsbo J (2003) Effects of high-intensity intermittent training on potassium kinetics and performance in human skeletal muscle. J Physiol 554(3):857–870

    Article  PubMed  PubMed Central  Google Scholar 

  • O’Brien PJ, Li G (1997) Rapid, simple and sensitive microassay for skeletal muscle homogenates in the functional assessment of the Ca-release channel of sarcoplasmic reticulum: application to diagnosis of susceptibility to malignant hyperthermia. Mol Cell Biochem 167:61–72

    Article  PubMed  Google Scholar 

  • Ørtenblad N, Nielsen J, Saltin B, Holmberg H-C (2011) Role of glycogen availability in sarcoplasmic reticulum Ca2+ kinetics in human skeletal muscle. J Physiol 589(3):711–725

    Article  PubMed  Google Scholar 

  • Place N, Maffiuletti NA, Martin A, Lepers R (2007) Assessment of the reliability of central and peripheral fatigue after sustained maximal voluntary contraction of the quadriceps muscle. Muscle Nerve 35:486–495

    Article  PubMed  Google Scholar 

  • Presland JD, Dowson MN, Cairns SP (2005) Changes of motor drive, cortical arousal and perceived exertion following prolonged cycling to exhaustion. Eur J Appl Physiol 95:42–51

    Article  PubMed  Google Scholar 

  • Rossman MJ, Venturelli M, McDaniel J, Amann M, Richardson RS (2012) Muscle mass and peripheral fatigue: a potential role for afferent feedback? Acta Physiol 206:242–250

    Article  CAS  Google Scholar 

  • Ruell PA, Booth J, McKenna MJ, Sutton JR (1995) Measurement of sarcoplasmic reticulum function in mammalian skeletal muscle: technical aspects. Anal Biochem 228:194–201

    Article  CAS  PubMed  Google Scholar 

  • Russ DW, Kent-Braun JA (2003) Sex differences in human skeletal muscle fatigue are eliminated under ischemic conditions. J Appl Physiol 94:2414–2422

    Article  PubMed  Google Scholar 

  • Sahlin K, Harris RC, Nylind B, Hultman E (1976) Lactate content and pH in muscle samples obtained after dynamic exercise. Pflügers Arch Eur J Physiol 367:143–149

    Article  CAS  Google Scholar 

  • Sahlin K, Nielsen JS, Mogensen M, Tonkonogi M (2006) Repeated static contractions increase mitochondrial vulnerability toward oxidative stress in human skeletal muscle. J Appl Physiol 101:833–839

    Article  CAS  PubMed  Google Scholar 

  • Schillings ML, Hoefsloot W, Stegeman DF, Zwarts MJ (2003) Relative contributions of central and peripheral factors to fatigue during a maximal sustained effort. Eur J Appl Physiol 90:562–568

    Article  PubMed  Google Scholar 

  • Shoshan-Barmatz V, Ashley RH (1998) The structure, function, and cellular regulation of ryanodine-sensitive Ca2+ release channels. Int Rev Cytol 183:185–249

    Article  CAS  PubMed  Google Scholar 

  • Stephenson DG, Lamb GD, Stephenson GMM (1998) Events of the excitation–contraction–relaxation (E–C–R) cycle in fast- and slow-twitch mammalian muscle fibres relevant to muscle fatigue. Acta Physiol Scand 162:229–245

    Article  CAS  PubMed  Google Scholar 

  • Taylor JL, Gandevia SC (2008) A comparison of central aspects of fatigue in submaximal and maximal voluntary contractions. J Appl Physiol 104:542–550

    Article  PubMed  Google Scholar 

  • Taylor JL, Amann M, Duchateau J, Meeusen R, Rice CL (2016) Neural contributions to muscle fatigue: from the brain to the muscle and back again. Med Sci Sports Exerc 48:2294–2306

    Article  CAS  PubMed  Google Scholar 

  • Thomas CK, Woods JJ, Bigland-Ritchie B (1989) Impulse propagation and muscle activation in long maximal voluntary contractions. J Appl Physiol 67:1835–1842

    CAS  PubMed  Google Scholar 

  • Westerblad H, Duty S, Allen DG (1993) Intracellular calcium concentration during low-frequency fatigue in isolated single fibers of mouse skeletal muscle. J Appl Physiol 75:382–388

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We gratefully thank our enthusiastic participants, along with Dr. Xanne A.K. Janse de Jonge and Kylie Hoffman for help with experiments, and Dr. Grace Bryant for performing the muscle biopsies. There was no external funding for this project.

We salute our inspirational coauthor, friend, colleague, and mentor Martin W. Thompson who passed away during the course of this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Simeon P. Cairns.

Ethics declarations

Conflict of interest

The authors declare to have no conflict of interest.

Additional information

Communicated by Nicolas Place.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cairns, S.P., Inman, L.A.G., MacManus, C.P. et al. Central activation, metabolites, and calcium handling during fatigue with repeated maximal isometric contractions in human muscle. Eur J Appl Physiol 117, 1557–1571 (2017). https://doi.org/10.1007/s00421-017-3640-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00421-017-3640-y

Keywords

Navigation