Skip to main content
Log in

Micromechanics methods for evaluating the effective moduli of soft neo-Hookean composites

  • Special
  • Published:
Archive of Applied Mechanics Aims and scope Submit manuscript

Abstract

Most biological soft tissues are multiphase composite materials, and the determination of their effective constitutive relations is a major concern in medical engineering. In this paper, we consider a class of soft two-phase composites, in which both phases are isotropic and hyperelastic neo-Hookean materials. For such an isotropic composite consisting of inclusions uniformly distributed but randomly oriented in a matrix, two constitutive parameters are required to characterize its hyperelastic constitutive relation. Micromechanics methods, including dilute concentration method, Mori–Tanaka method, self-consistent method, and differential method are extended to predict the effective properties of this kind of composites. Analytical solutions are given for the hyperelastic neo-Hookean composites reinforced by spherical particles, long fibers, and penny-shaped platelets, respectively. Finite element simulations are performed to evaluate the accuracy of these theoretical methods.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Miracle, D.B.: Metal matrix composites-From science to technological significance. Compos. Sci. Technol. 65(15–16), 2526–2540 (2005)

    Article  Google Scholar 

  2. Ashori, A.: Wood-plastic composites as promising green-composites for automotive industries!. Bioresour. Technol. 99(11), 4661–4667 (2008)

    Article  Google Scholar 

  3. Holbery, J., Houston, D.: Natural-fiber-reinforced polymer composites applications in automotive. J. Miner. Met. Mater. Soc. 58(11), 80–86 (2006)

    Article  Google Scholar 

  4. Rezwan, K., Chen, Q.Z., Blaker, J.J., Boccaccini, A.R.: Biodegradable and bioactive porous polymer/inorganic composite scaffolds for bone tissue engineering. Biomaterials 27(18), 3413–3431 (2006)

    Article  Google Scholar 

  5. Kokubo, T., Kim, H.M., Kawashita, M.: Novel bioactive materials with different mechanical properties. Biomaterials 24(13), 2161–2175 (2003)

    Article  Google Scholar 

  6. Fu, S.Y., Feng, X.Q., Lauke, B., Mai, Y.W.: Effects of particle size, particle/matrix interface adhesion and particle loading on mechanical properties of particulate-polymer composites. Compos. Part B Eng. 39(6), 933–961 (2008)

    Article  Google Scholar 

  7. Zhou, K., Hoh, H.J., Wang, X., Keer, L.M., Pang, J.H.L., Song, B., Wang, Q.J.: A review of recent works on inclusions. Mech. Mater. 60, 144–158 (2013)

    Article  Google Scholar 

  8. Sun, C.T., Vaidya, R.S.: Prediction of composite properties, from a representative volume element. Compos. Sci. Technol. 56(2), 171–179 (1996)

    Article  Google Scholar 

  9. Frogley, M.D., Ravich, D., Wagner, H.D.: Mechanical properties of carbon nanoparticle-reinforced elastomers. Compos. Sci. Technol. 63(11), 1647–1654 (2003)

    Article  Google Scholar 

  10. Ji, X.Y., Cao, Y.P., Feng, X.Q.: Micromechanics prediction of the effective elastic moduli of graphene sheet-reinforced polymer nanocomposites. Model. Simul. Mater. Sci. Eng. 18(4), 045005 (2010)

    Article  Google Scholar 

  11. Eshelby, J.D.: The determination of the elastic field of an ellipsoidal inclusion, and related problems. Proc. R. Soc. Lond. Ser. A Math. Phys. Sci. 241(1226), 376–396 (1957)

    Article  MathSciNet  MATH  Google Scholar 

  12. Mori, T., Tanaka, K.: Average stress in matrix and average elastic energy of materials with misfitting inclusions. Acta Metall. 21(5), 571–574 (1973)

    Article  Google Scholar 

  13. Hill, R.: A self-consistent mechanics of composite materials. J. Mech. Phys. Solids 13(4), 213–222 (1965)

    Article  Google Scholar 

  14. Christensen, R.M.: A critical evaluation for a class of micromechanics models. J. Mech. Phys. Solids 38(3), 379–404 (1990)

    Article  Google Scholar 

  15. Roscoe, R.: The viscosity of suspensions of rigid spheres. Br. J. Appl. Phys 3(8), 267–269 (1952)

    Article  Google Scholar 

  16. Mura, T.: Micromechanics of Defects in Solids. Martinus Nijhoff Publishers, Dordrecht (1987)

    Book  Google Scholar 

  17. Rivlin, R.S.: Large elastic deformations of isotropic materials IV: further developments of the general theory. Philos. Trans. R. Soc. Lond. Ser. A Math. Phys. Sci. 241(835), 379–397 (1948)

    Article  MathSciNet  MATH  Google Scholar 

  18. Ahn, B., Kim, J.: Measurement and characterization of soft tissue behavior with surface deformation and force response under large deformations. Med. Image Anal. 14(2), 138–148 (2010)

    Article  MathSciNet  Google Scholar 

  19. Cox, M.A.J., Driessen, N.J.B., Boerboorn, R.A., Bouten, C.V.C., Baaijens, F.P.T.: Mechanical characterization of anisotropic planar biological soft tissues using finite indentation: experimental feasibility. J. Biomech. 41(2), 422–429 (2008)

    Article  Google Scholar 

  20. Guo, Z.Y., Peng, X.Q., Moran, B.: A composites-based hyperelastic constitutive model for soft tissue with application to the human annulus fibrosus. J. Mech. Phys. Solids 54(9), 1952–1971 (2006)

    Article  MATH  Google Scholar 

  21. Li, B., Cao, Y.P., Feng, X.Q., Gao, H.: Surface wrinkling of mucosa induced by volumetric growth: Theory, simulation and experiment. J. Mech. Phys. Solids 59(4), 758–774 (2011)

    Article  MathSciNet  Google Scholar 

  22. Miller, K.: Method of testing very soft biological tissues in compression. J. Biomech. 38(1), 153–158 (2005)

    Article  Google Scholar 

  23. Meyers, M.A., Chen, P.Y., Lin, A.Y.M., Seki, Y.: Biological materials: Structure and mechanical properties. Prog. Mater. Sci. 53(1), 1–206 (2008)

    Article  Google Scholar 

  24. Gasser, T.C., Ogden, R.W., Holzapfel, G.A.: Hyperelastic modelling of arterial layers with distributed collagen fibre orientations. J. R. Soc. Interface 3(6), 15–35 (2006)

    Article  Google Scholar 

  25. Chen, H., Zhao, X.F., Lu, X., Kassab, G.: Non-linear micromechanics of soft tissues. Int. J. Non-Linear Mech. 56, 79–85 (2013)

    Article  Google Scholar 

  26. Abolhassani, N., Patel, R., Moallem, M.: Needle insertion into soft tissue: a survey. Med. Eng. Phys. 29(4), 413–431 (2007)

    Article  Google Scholar 

  27. Dorozhkin, S.V., Epple, M.: Biological and medical significance of calcium phosphates. Anal. Chem. 41(17), 3130–3146 (2002)

    Google Scholar 

  28. Cvetkovic, C., Raman, R., Chan, V., Williams, B.J., Tolish, M., Bajaj, P., Sakar, M.S., Asada, H.H., Saif, M.T.A., Bashir, R.: Three-dimensionally printed biological machines powered by skeletal muscle. Proc. Natl. Acad. Sci. USA 111(28), 10125–10130 (2014)

    Article  Google Scholar 

  29. Liu, Y., Terrell, J.L., Tsao, C.Y., Wu, H.C., Javvaji, V., Kim, E., Cheng, Y., Wang, Y., Ulijn, R.V., Raghavan, S.R., Rubloff, G.W., Bentley, W.E., Payne, G.F.: Biofabricating multifunctional soft matter with enzymes and stimuli-responsive materials. Adv. Funct. Mater. 22(14), 3004–3012 (2012)

    Article  Google Scholar 

  30. Qiu, G.Y., Pence, T.J.: Remarks on the behavior of simple directionally reinforced incompressible nonlinearly elastic solids. J. Elast. 49(1), 1–30 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  31. Merodio, J., Ogden, R.W.: Mechanical response of fiber-reinforced incompressible non-linearly elastic solids. Int. J. Non-Linear Mech. 40(2–3), 213–227 (2005)

    Article  MATH  Google Scholar 

  32. Guo, Z.Y., Peng, X.Q., Moran, B.: Mechanical response of neo-Hookean fiber reinforced incompressible nonlinearly elastic solids. Int. J. Solids Struct. 44(6), 1949–1969 (2007)

    Article  MATH  Google Scholar 

  33. Chen, H., Liu, Y., Zhao, X., Lanir, Y., Kassab, G.S.: A micromechanics finite-strain constitutive model of fibrous tissue. J. Mech. Phys. Solids 59(9), 1823–1837 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  34. Lopez-Pamies, O., Castaneda, P.P.: Second-order estimates for the macroscopic response and loss of ellipticity in porous rubbers at large deformations. J. Elast. 76(3), 247–287 (2004)

    Article  MATH  Google Scholar 

  35. Castaneda, P.P.: Second-order homogenization estimates for nonlinear composites incorporating field fluctuations: I-Theory. J. Mech. Phys. Solids 50(4), 737–757 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  36. Lopez-Pamies, O., Goudarzi, T., Nakamura, T.: The nonlinear elastic response of suspensions of rigid inclusions in rubber: I-An exact result for dilute suspensions. J. Mech. Phys. Solids 61(1), 1–18 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  37. Lopez-Pamies, O., Goudarzi, T., Danas, K.: The nonlinear elastic response of suspensions of rigid inclusions in rubber: II-A simple explicit approximation for finite-concentration suspensions. J. Mech. Phys. Solids 61(1), 19–37 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  38. Lopez-Pamies, O., Idiart, M.I., Nakamura, T.: Cavitation in elastomeric solids: I-A defect-growth theory. J. Mech. Phys. Solids 59(8), 1464–1487 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  39. Shen, G.L., Hu, G.K.: Mechanics of Composite Materials. Tsinghua University Press, Beijing (2006)

    Google Scholar 

  40. Feng, X.Q.: On estimation methods for effective moduli of microcracked solids. Arch. Appl. Mech. 71(8), 537–548 (2001)

    Article  MATH  Google Scholar 

  41. Walpole, L.J.: On overall elastic moduli of composite materials. J. Mech. Phys. Solids 17(4), 235–251 (1969)

    Article  MATH  Google Scholar 

  42. Hashin, Z., Shtrikman, S.: A variational approach to the theory of the elastic behaviour of multiphase materials. J. Mech. Phys. Solids 11(2), 127–140 (1963)

    Article  MathSciNet  MATH  Google Scholar 

  43. Ogden, R.W.: Non-linear Elastic Deformations. Ellis Horwood, Chichester (1984)

    Google Scholar 

Download references

Acknowledgments

Supports from the National Natural Science Foundation of China (Grant Nos. 11432008 and 11542005) and Tsinghua University (20121087991) are acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xi-Qiao Feng.

Appendices

Appendix A: Nonlinear elasticity

Refer to \(\mathbf{X}\) and \(\mathbf{x}\) as the position of a material point in the initial and current configurations, respectively. The displacement of the material point is \(\mathbf{u}=\mathbf{x}-\mathbf{X}\). Thus the deformation gradient tensor \(\mathbf{F}\) reads

$$\begin{aligned} \mathbf{F}=\frac{\partial \mathbf{x}}{\partial \mathbf{X}}=\mathbf{I}+\frac{\partial \mathbf{u}}{\partial \mathbf{X}}=\left( {\delta _{ij} +u_{i,j}} \right) \mathbf{e}_i \mathbf{e}_j, \end{aligned}$$
(55)

where \(\delta _{ij}\) is the Kronecker delta, \(u_{i,j}={\partial u_i }/{\partial X_j}\) are the displacement gradients, and \(\mathbf{e}_i\) are the base vectors.

The strain energy density function of a neo-Hookean hyperelastic material can be expressed as Eq. (1) in the main text. According to the theory of nonlinear elasticity [43], the Cauchy stress tensor can be derived as

$$\begin{aligned} {\varvec{\sigma }}=I_3^{-1/2} \mathbf{F}\cdot \frac{\partial W}{\partial \mathbf{F}}=\mu I_3^{-5/6} \mathbf{F}\cdot \mathbf{F}^{\mathrm{T}}+\left( {-\frac{\mu }{3}I_1 I_3^{-5/6}+\kappa I_3^{1/2}-\kappa } \right) \mathbf{I}, \end{aligned}$$
(56)

where \(\mathbf{I}\) is the second-order identical tensor. Substituting Eq. (55) into (56), we obtain the Cauchy stresses

$$\begin{aligned} \sigma _{ij}=\mu I_3^{-5/6} \left( {u_{i,j} +u_{j,i} +u_{i,k} u_{j,k}} \right) +\left( {\mu I_3^{-5/6}-\frac{1}{3}\mu I_1 I_3^{-5/6}+\kappa I_3^{1/2}-\kappa } \right) \delta _{ij}. \end{aligned}$$
(57)

In the principal stretch coordinate system, the deformation gradient tensor becomes \(\mathbf{F}=\text {diag}\left\{ {\lambda _1, \lambda _2 ,\lambda _3} \right\} \), with \(\lambda _i \left( {i=1,2,3} \right) \) being the principal stretches. Correspondingly, \(I_1\) and \(I_3\) can be re-expressed as

$$\begin{aligned} I_1= & {} 3+2\left( {\varepsilon _1 +\varepsilon _2 +\varepsilon _3} \right) +\left( {\varepsilon _1^2 +\varepsilon _2^2 +\varepsilon _3^2} \right) , \nonumber \\ I_3= & {} 1+2\left( {\varepsilon _1 +\varepsilon _2 +\varepsilon _3} \right) +\cdots , \end{aligned}$$
(58)

where \(\varepsilon _i=\lambda _i-1\) are the principal Cauchy strains.

In the case of infinitesimal deformation, \(\left| {u_{i,j}} \right| <<1\), substituting Eq. (58) into (57) produces

$$\begin{aligned} \sigma _{ij}=2\mu \varepsilon _{ij} +\left( {\kappa -\frac{2}{3}\mu } \right) \varepsilon _{kk} \delta _{ij}, \end{aligned}$$
(59)

where \(\varepsilon _{ij}\) denote the Cauchy strains.

Therefore, in the cases of infinitesimal deformation, the neo-Hookean constitutive model in Eq. (1) in the main text degenerates to the linear elastic Hooke’s law.

Appendix B: Simplified calculation of transversely isotropic tensors

An arbitrary transversely isotropic tensor \(\mathbf{H}\) possesses six independent parameters. When it has rotational symmetry about the \(x_1\) axis, \(\mathbf{H}\) can be written in a matrix form [39] as

$$\begin{aligned} \mathbf{H}=\left[ {\begin{array}{c@{\quad }c@{\quad }c@{\quad }c@{\quad }c@{\quad }c} d &{} g &{} g &{} &{} &{} \\ h &{} \frac{b+e}{2} &{} \frac{b-e}{2} &{} &{} &{} \\ h &{} \frac{b-e}{2} &{} \frac{b+e}{2}&{} &{} &{} \\ &{} &{} &{} e &{} &{} \\ &{} &{} &{} &{} f &{} \\ &{} &{} &{} &{} &{} f \\ \end{array}} \right] , \end{aligned}$$
(60)

where the six italic alphabets af are defined by

$$\begin{aligned} \begin{array}{l} b=2H_{2222} -2H_{2323} \;,\;g=H_{1122} \;,\;h=H_{2211}, \\ d=H_{1111} \;,\;e=2H_{2323} \;,\;f=2H_{1212}. \\ \end{array} \end{aligned}$$
(61)

Using the Walpole’s method, a transversely isotropic tensor \(\mathbf{H}\) can be simply expressed as \(\mathbf{H}=\left( {b,g,h,d,e,f} \right) \). The algorithms of transversely isotropic tensors can readily be obtained in terms of matrices. For two transversely isotropic tensors \(\mathbf{H}_\chi =\left( {b_\chi , g_\chi , h_\chi ,d_\chi , e_\chi , f_\chi } \right) \), \((\chi =1,2)\), for example, their algorithms can be expressed as

$$\begin{aligned} \mathbf{H}_1 \pm \mathbf{H}_2= & {} \left( {b_1 \pm b_2, g_1 \pm g_2, h_1 \pm h_2, d_1 \pm d_2, e_1 \pm e_2, f_1 \pm f_2} \right) , \nonumber \\ \mathbf{H}_1:\mathbf{H}_2= & {} \left( {b_1 b_2 +2h_1 g_2, g_1 b_2 +d_1 g_2, b_1 h_2 +h_1 d_2, d_1 d_2 +2g_1 h_2, e_1 e_2, f_1 f_2} \right) , \nonumber \\ \mathbf{H}^{-1}= & {} \left( {\frac{d}{\Delta },-\frac{g}{\Delta },-\frac{h}{\Delta },\frac{b}{\Delta },\frac{1}{e},\frac{1}{f}} \right) \;\;\;,\;\;\;\Delta =bd-2gh. \end{aligned}$$
(62)

Moreover, if \(\mathbf{H}\) is an isotropic tensor, it can be further simplified as \(\mathbf{H}=\left[ {\zeta , \eta } \right] \), where \(\zeta =3H_{1111}-4H_{1212} \)and\(\eta =2H_{1212}\). For two isotropic tensors \(\mathbf{H}_\chi =\left[ {\zeta _\chi , \eta _\chi } \right] \;\;,\;\;\left( {\chi =1,2} \right) \), one has the relations

$$\begin{aligned} \mathbf{H}_1 \pm \mathbf{H}_2=\left[ {\zeta _1 \pm \zeta _2, \eta _1 \pm \eta _2} \right] \;,\;\mathbf{H}_1:\mathbf{H}_2=\left[ {\zeta _1 \zeta _2, \eta _1 \eta _2} \right] \;,\;\mathbf{H}_1^{-1}=\left[ {\frac{1}{\zeta _1},\frac{1}{\eta _1}} \right] . \end{aligned}$$
(63)

Given the above notations, the algorithms of transversely isotropic tensors will become more intuitive. For example, the effective elastic stiffness tensor for the composites considered in this paper is isotropic and thus can be expressed as

$$\begin{aligned} \mathbf{C}= & {} \left[ {3\kappa , 2\mu } \right] \nonumber \\= & {} \left( {2\kappa +\frac{2}{3}\mu , \kappa -\frac{2}{3}\mu , \kappa -\frac{2}{3}\mu , \kappa +\frac{4}{3}\mu , 2\mu , 2\mu } \right) . \end{aligned}$$
(64)

For the inclusions, one can express their Eshelby tensors in similar forms, which can be used to calculate the LST tensor \({\varvec{\Pi }}\) and the OST tensor \({\varvec{\Omega }}\) easily.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lin, SZ., Zhang, LY., Sheng, JY. et al. Micromechanics methods for evaluating the effective moduli of soft neo-Hookean composites. Arch Appl Mech 86, 219–234 (2016). https://doi.org/10.1007/s00419-015-1116-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00419-015-1116-2

Keywords

Navigation