Skip to main content
Log in

A Micromechanical Model for Effective Thermo-elastic Properties of Nanocomposites with Graded Properties of Interphase

  • Research Paper
  • Published:
Iranian Journal of Science and Technology, Transactions of Mechanical Engineering Aims and scope Submit manuscript

Abstract

In this study, a micromechanics-based analytical model is proposed to evaluate the effective thermo-elastic properties of polymer matrix nanocomposite materials. Accuracy, simplicity and efficiency are the main features of this micromechanical model. The constituents of representative volume element of nanocomposites are treated as three distinct phases, consisting of nanofiller, polymer matrix and interphase around the nanofiller. Young’s modulus and coefficient of thermal expansion of the interphase are continuously graded from those of the nanofiller to those of the polymer matrix. The effects of nanoparticle volume fraction, nanoparticle size, interphase thickness, nanofiller aspect ratio and number of layers in the interphase on the thermo-elastic properties of nanocomposites are studied. The comparison of results of the presented model with experimental data and other available micromechanical analysis demonstrates the validity of the proposed micromechanical model in the case of response of nanocomposites with graded properties of interphase.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Aghdam MM, Dezhsetan A (2005) Micromechanics based analysis of randomly distributed fiber reinforced composites using simplified unit cell model. Compos Struct 71:327–332

    Article  Google Scholar 

  • Aghdam MM, Smith DJ, Pavier MJ (2000) Finite element micromechanical modelling of yield and collapse behaviour of metal matrix composites. J Mech Phys Solids 48:499–528

    Article  MATH  Google Scholar 

  • Ajori S, Ansari R, Mirnezhad M (2013) Mechanical properties of defective γ-graphyne using molecular dynamics simulations. Mater Sci Eng A 561:34–39

    Article  Google Scholar 

  • Ansari R, Malakpoura S, Faghihnasirib M, Ajori S (2013a) Structural and elastic properties of carbon nanotube containing Fe atoms using first principles. Super Microstruct 64:220–226

    Article  Google Scholar 

  • Ansari R, Rouhi H, Arash B (2013b) Vibrational analysis of double-walled carbon nanotubes based on the nonlocal Donnell shell theory via a new numerical approach. IJST Trans Mech Eng 37:91–105

    Google Scholar 

  • Ansari R, Rouhi S, Ajori S (2014) Elastic properties and large deformation of two-dimensional silicene nanosheets using molecular dynamics. Super Microstruct 65:64–70

    Article  Google Scholar 

  • Avella M, Bondioli F, Cannillo V, Errico ME, Ferrari AM, Focher B, Malinconico M, Manfredini T, Montorsi M (2004) Preparation, characterisation and computational study of poly (e-caprolactone) based nanocomposites. Mater Sci Technol 20:1340–1344

    Article  Google Scholar 

  • Baxter SC, Robinson CT (2011) Pseudo-percolation: critical volume fractions and mechanical percolation in polymer nanocomposites. Compos Sci Technol 71:1273–1279

    Article  Google Scholar 

  • Berriot J, Martin F, Montes H, Monnerie L, Sotta P (2003) Reinforcement of model filled elastomers: characterization of the cross-linking density at the filler–elastomer interface by 1H NMR measurements. Polymer 44:1437–1447

    Article  Google Scholar 

  • Boutaleb S, Zairi F, Mesbah A, Nait-Abdelaziz M, Gloaguen JM, Boukharouba T, Lefebvre JM (2009) Micromechanics-based modelling of stiffness and yield stress for silica/polymer nanocomposites. Int J Solids Struct 46:1716–1726

    Article  MATH  Google Scholar 

  • Falahatgar SR, Salehi M, Aghdam MM (2009) Nonlinear viscoelastic response of unidirectional fiber reinforced composites in off-axis loading. J Reinf Plast Compos 28:1793–1812

    Article  Google Scholar 

  • Griebel M, Hamaekers J (2004) Molecular dynamics simulations of the elastic moduli of polymer–carbon nanotube composites. Comput Methods Appl Mech Eng 193:1773–1788

    Article  MathSciNet  MATH  Google Scholar 

  • Han Y, Elliott J (2007) Molecular dynamics simulations of the elastic properties of polymer/carbon nanotube composites. Comput Mater Sci 39:315–323

    Article  Google Scholar 

  • Huanga J, Rodrigue D (2014) The effect of carbon nanotube orientation and content on the mechanical properties of polypropylene based composites. Mater Des 55:653–663

    Article  Google Scholar 

  • Joshi UA, Sharma SC, Harsha SP (2012) Effect of carbon nanotube orientation on the mechanical properties of nanocomposites. Compos B 43:2063–2071

    Article  Google Scholar 

  • Kundalwal SI, Ray MC (2013) Effects of carbon nanotube waviness on the elastic properties of the fuzzy fiber reinforced composites. J Appl Mech 80(021010):1–13

    Google Scholar 

  • Li C, Chou TW (2009) Failure of carbon nanotube/polymer composites and the effect of nanotube waviness. Compos Part A 40:1580–1586

    Article  Google Scholar 

  • Liu H, Brinson LC (2007) Reinforcing efficiency of nanoparticles: a simple comparison for polymer nanocomposites. Compos Sci Technol 68:1502–1512

    Article  Google Scholar 

  • Mahmoodi MJ, Aghdam MM (2011) Damage analysis of fiber reinforced Ti-alloy subjected to multi-axial loading: a micromechanical approach. Mater Sci Eng A 528:7983–7990

    Article  Google Scholar 

  • Mortazavi B, Bardon J, Ahzi S (2013) Interphase effect on the elastic and thermal conductivity response of polymer nanocomposite materials: 3D finite element study. Comput Mater Sci 69:100–106

    Article  Google Scholar 

  • Odegard GM, Clancy TC, Gates TS (2005) Modeling of the mechanical properties of nanoparticle/polymer composites. Polymer 46:553–562

    Article  Google Scholar 

  • Ou Y, Yang F, Yu ZZ (1998) A new conception on the toughness of nylon 6/silica nanocomposite prepared via in situ polymerization. J Polym Sci B Polym Phys 36:789–795

    Article  Google Scholar 

  • Peng RD, Zhou HW, Wang HW, Mishnaevsky L Jr (2012) Modeling of nano-reinforced polymer composites: microstructure effect on Young’s modulus. Comput Mater Sci 60:19–31

    Article  Google Scholar 

  • Seidel GD, Lagoudas DC (2009) A micromechanics model for the electrical conductivity of nanotube-polymer nanocomposites. J Compos Mater 43:917–941

    Article  Google Scholar 

  • Smith JS, Bedrov D, Smith GD (2003) A molecular dynamics simulation study of nanoparticle interactions in a model polymer–nanoparticle composite. Compos Sci Technol 63:1599–1605

    Article  Google Scholar 

  • Snipes JS, Robinson CT, Baxter SC (2011) Effects of scale and interface on the three-dimensional micromechanics of polymer nanocomposites. J Compos Mater 45:2537–2546

    Article  Google Scholar 

  • Sobhani Aragh B, Nasrollah Barati AH, Hedayati H (2012) Eshelby–Mori–Tanaka approach for vibrational behavior of continuously graded carbon nanotube-reinforced cylindrical panels. Compos B 43:1943–1954

    Article  Google Scholar 

  • Tsai JL, Tzeng SH, Chiu YT (2010) Characterizing elastic properties of carbon nanotubes/polyimide nanocomposites using multi-scale simulation. Compos Part B 41:106–115

    Article  Google Scholar 

  • Wang ZD, Lu JJ, Li Y, Fu SY, Jiang SQ, Zhao XX (2005) Low temperature properties of PI/SiO2 nanocomposite films. Mater Sci Eng B 123:216–221

    Article  Google Scholar 

  • Wang HW, Zhou HW, Peng RD, Mishnaevsky L Jr (2011) Nanoreinforced polymer composites: 3D FEM modeling with effective interface concept. Compos Sci Technol 71:980–988

    Article  Google Scholar 

  • Wei CY, Shrivastava D, Choi K (2002) Thermal expansion and diffusion coefficients of carbon nanotube-polymer composites. Nano Lett 2:647–650

    Article  Google Scholar 

  • Weon JI, Sue HJ (2005) Effects of clay orientation and aspect ratio on mechanical behavior of nylon-6 nanocomposite. Polymer 46:6325–6334

    Article  Google Scholar 

  • Yazdchi K, Salehi M (2011) The effects of CNT waviness on interfacial stress transfer characteristics of CNT/polymer composites. Compos A 42:1301–1309

    Article  Google Scholar 

  • Zhang WX, Wanga TJ, Chen X (2010) Effect of surface/interface stress on the plastic deformation of nanoporous materials and nanocomposites. Int J Plast 26:957–975

    Article  MATH  Google Scholar 

  • Zhu R, Pan E, Roy AK (2007) Molecular dynamics study of the stress–strain behavior of carbon-nanotube reinforced Epon 862 composites. Mater Sci Eng A 447:51–57

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Reza Ansari.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hassanzadeh-Aghdam, M.K., Ansari, R. A Micromechanical Model for Effective Thermo-elastic Properties of Nanocomposites with Graded Properties of Interphase. Iran J Sci Technol Trans Mech Eng 41, 141–147 (2017). https://doi.org/10.1007/s40997-016-0045-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40997-016-0045-1

Keywords

Navigation