Skip to main content
Log in

ERADication of EDEM1 occurs by selective autophagy and requires deglycosylation by cytoplasmic peptide N-glycanase

  • Original Paper
  • Published:
Histochemistry and Cell Biology Aims and scope Submit manuscript

Abstract

ER degradation-enhancing α-mannosidase-like 1 protein (EDEM1) is involved in the routing of misfolded glycoproteins for degradation in the cytoplasm. Previously, we reported that EDEM1 leaves the endoplasmic reticulum via non-COPII vesicles (Zuber et al. in Proc Natl Acad Sci USA 104:4407–4412, 2007) and becomes degraded by basal autophagy (Le Fourn et al. in Cell Mol Life Sci 66:1434–1445, 2009). However, it is unknown which type of autophagy is involved. Likewise, how EDEM1 is targeted to autophagosomes remains elusive. We now show that EDEM1 is degraded by selective autophagy. It colocalizes with the selective autophagy cargo receptors p62/SQSTM1, neighbor of BRCA1 gene 1 (NBR1) and autophagy-linked FYVE (Alfy) protein, and becomes engulfed by autophagic isolation membranes. The interaction with p62/SQSTM1 and NBR1 is required for routing of EDEM1 to autophagosomes since it can be blocked by short inhibitory RNA knockdown of the cargo receptors. Furthermore, p62/SQSTM1 interacts only with deglycosylated EDEM1 that is also ubiquitinated. The deglycosylation of EDEM1 occurs by the cytosolic peptide N-glycanase and is a prerequisite for interaction and aggregate formation with p62/SQSTM1 as demonstrated by the effect of peptide N-glycanase inhibitors on the formation of protein aggregates. Conversely, aggregation of p62/SQSTM1 and EDEM1 occurs independent of cytoplasmic histone deacetylase. These data provide novel insight into the mechanism of autophagic degradation of the ER-associated protein degradation (ERAD) component EDEM1 and disclose hitherto unknown parallels with the clearance of cytoplasmic aggregates of misfolded proteins by selective autophagy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Abbreviations

Alfy:

Autophagy-linked FYVE protein

BODY-(GlcNAc)2-CIAc:

Chloroacetamidyl chitobiose coupled to 4,4-difluoro-5,7-dimethyl-4-bora-3a,4a-diaza-s-indacene-3-propionic acid

PNGase:

Cytoplasmic peptide N-glycanase

EDEM1:

ER degradation-enhancing α-mannosidase-like 1 protein

ER:

Endoplasmic reticulum

ERAD:

ER-associated protein degradation

LC3:

Microtubule-associated protein 1 light chain 3 beta

man:

Mannose

GlcNAc:

N-Acetylglucosamine

NBR1:

Neighbor of BRCA1 gene 1

p62/SQSTM1:

Sequestosome 1

siRNA:

Short inhibitory RNA

Z-VAD(OMe)-fmk:

Carbobenzyloxy-Val-Ala-Asp-α-fluoromethylketone

References

  • Araki K, Nagata K (2012) Protein folding and quality control in the ER. In: Morimoto RI, Selkoe DJ, Kelly JW (eds) Protein homeostasis. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, pp 121–145

    Google Scholar 

  • Bannykh SI, Rowe T, Balch WE (1996) The organization of endoplasmic reticulum export complexes. J Cell Biol 135:19–35

    Article  CAS  PubMed  Google Scholar 

  • Bernasconi R, Galli C, Noack J, Bianchi S, de Haan C, Reggiori F, Molinari M (2012) Role of the SEL1L: LC3-I complex as an ERAD tuning receptor in the mammalian ER. Mol Cell 46:809–819

    Article  CAS  PubMed  Google Scholar 

  • Bhamidipati A, Denic V, Quan EM, Weissman JS (2005) Exploration of the topological requirements of ERAD identifies Yos9p as a lectin sensor of misfolded glycoproteins in the ER lumen. Mol Cell 19:741–751

    Article  CAS  PubMed  Google Scholar 

  • Bjorkoy G, Lamark T, Brech A, Outzen H, Perander M, Overvatn A, Stenmark H, Johansen T (2005) p62/SQSTM1 forms protein aggregates degraded by autophagy and has a protective effect on huntingtin-induced cell death. J Cell Biol 171:603–614

    Article  PubMed Central  PubMed  Google Scholar 

  • Blom D, Hirsch C, Stern P, Tortorella D, Ploegh HL (2004) A glycosylated type I membrane protein becomes cytosolic when peptide: N-glycanase is compromised. EMBO J 23:650–658

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Braakman I, Bulleid NJ (2011) Protein folding and modification in the mammalian endoplasmic reticulum. Annu Rev Biochem 80:71–99

    Article  CAS  PubMed  Google Scholar 

  • Buschhorn BA, Kostova Z, Medicherla B, Wolf DH (2004) A genome-wide screen identifies Yos9p as essential for ER-associated degradation of glycoproteins. FEBS Lett 577:422–426

    Article  CAS  PubMed  Google Scholar 

  • Cali T, Galli C, Olivari S, Molinari M (2008) Segregation and rapid turnover of EDEM1 by an autophagy-like mechanism modulates standard ERAD and folding activities. Biochem Biophys Res Commun 371:405–410

    Article  CAS  PubMed  Google Scholar 

  • Carvalho P, Stanley AM, Rapoport TA (2010) Retrotranslocation of a misfolded luminal ER protein by the ubiquitin-ligase Hrd1p. Cell 143:579–591

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Chen B, Retzlaff M, Roos T, Frydman J (2012) Cellular strategies of protein quality control. In: Morimoto RI, Selkoe DJ, Kelly JW (eds) Protein homeostasis. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, pp 33–46

    Google Scholar 

  • Clausen TH, Lamark T, Isakson P, Finley K, Larsen KB, Brech A, Overvatn A, Stenmark H, Bjorkoy G, Simonsen A, Johansen T (2010) p62/SQSTM1 and ALFY interact to facilitate the formation of p62 bodies/ALIS and their degradation by autophagy. Autophagy 6:330–344

    Article  CAS  PubMed  Google Scholar 

  • Clerc S, Hirsch C, Oggier DM, Deprez P, Jakob C, Sommer T, Aebi M (2009) Htm1 protein generates the N-glycan signal for glycoprotein degradation in the endoplasmic reticulum. J Cell Biol 184:159–172

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Cormier JH, Tamura T, Sunryd JC, Hebert DN (2009) EDEM1 recognition and delivery of misfolded proteins to the SEL1L-containing ERAD complex. Mol Cell 34:627–633

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Denic V, Quan EM, Weissman JS (2006) A luminal surveillance complex that selects misfolded glycoproteins for ER-associated degradation. Cell 126:349–359

    Article  CAS  PubMed  Google Scholar 

  • Eisele F, Schafer A, Wolf DH (2010) Ubiquitylation in the ERAD pathway. Subcell Biochem 54:136–148

    Article  CAS  PubMed  Google Scholar 

  • Elsasser S, Finley D (2005) Delivery of ubiquitinated substrates to protein-unfolding machines. Nat Cell Biol 7:742–749

    Article  CAS  PubMed  Google Scholar 

  • Filimonenko M, Isakson P, Finley KD, Anderson M, Jeong H, Melia TJ, Bartlett BJ, Myers KM, Birkeland HC, Lamark T, Krainc D, Brech A, Stenmark H, Simonsen A, Yamamoto A (2010) The selective macroautophagic degradation of aggregated proteins requires the PI3P-binding protein Alfy. Mol Cell 38:265–279

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Furumai R, Komatsu Y, Nishino N, Khochbin S, Yoshida M, Horinouchi S (2001) Potent histone deacetylase inhibitors built from trichostatin A and cyclic tetrapeptide antibiotics including trapoxin. Proc Natl Acad Sci USA 98:87–92

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Garcia-Calvo M, Peterson EP, Leiting B, Ruel R, Nicholson DW, Thornberry NA (1998) Inhibition of human caspases by peptide-based and macromolecular inhibitors. J Biol Chem 273:32608–32613

    Article  CAS  PubMed  Google Scholar 

  • Gauss R, Jarosch E, Sommer T, Hirsch C (2006) A complex of Yos9p and the HRD ligase integrates endoplasmic reticulum quality control into the degradation machinery. Nat Cell Biol 8:849–854

    Article  CAS  PubMed  Google Scholar 

  • Gauss R, Kanehara K, Carvalho P, Ng DTW, Aebi M (2011) A complex of Pdi1p and the mannosidase Htm1p initiates clearance of unfolded glycoproteins from the endoplasmic reticulum. Mol Cell 42:782–793

    Article  CAS  PubMed  Google Scholar 

  • Hagihara S, Miyazaki A, Matsuo I, Tatami A, Suzuki T, Ito Y (2007) Fluorescently labeled inhibitor for profiling cytoplasmic peptide: N-glycanase. Glycobiology 17:1070–1076

    Article  CAS  PubMed  Google Scholar 

  • Helenius A, Aebi M (2004) Roles of N-linked glycans in the endoplasmic reticulum. Annu Rev Biochem 73:1019–1049

    Article  CAS  PubMed  Google Scholar 

  • Hirano K, Guhl B, Roth J, Ziak M (2009) A cell culture system for the induction of Mallory bodies: Mallory bodies and aggresomes represent different types of inclusion bodies. Histochem Cell Biol 132:293–304

    Article  CAS  PubMed  Google Scholar 

  • Hirsch C, Blom D, Ploegh HL (2003) A role for N-glycanase in the cytosolic turnover of glycoproteins. EMBO J 22:1036–1046

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Hosokawa N, Wada I, Hasegawa K, Yorihuzi T, Tremblay LO, Herscovics A, Nagata K (2001) A novel ER alpha-mannosidase-like protein accelerates ER-associated degradation. EMBO Rep 2:415–422

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Hosokawa N, Kamiya Y, Kamiya D, Kato K, Nagata K (2009) Human OS-9, a lectin required for glycoprotein endoplasmic reticulum-associated degradation, recognizes mannose-trimmed N-glycans. J Biol Chem 284:17061–17068

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Hosokawa N, Tremblay LO, Sleno B, Kamiya Y, Wada I, Nagata K, Kato K, Herscovics A (2010) EDEM1 accelerates the trimming of a1,2-linked mannose on the C branch of N-glycans. Glycobiology 20:567–575

    Article  CAS  PubMed  Google Scholar 

  • Hutt DM, Powers ET, Balch WE (2009) The proteostasis boundary in misfolding diseases of membrane traffic. FEBS Lett 583:2639–2646

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Ichimura Y, Kumanomidou T, Sou YS, Mizushima T, Ezaki J, Ueno T, Kominami E, Yamane T, Tanaka K, Komatsu M (2008) Structural basis for sorting mechanism of p62 in selective autophagy. J Biol Chem 283:22847–22857

    Article  CAS  PubMed  Google Scholar 

  • Iwata A, Riley BE, Johnston JA, Kopito RR (2005) HDAC6 and microtubules are required for autophagic degradation of aggregated huntingtin. J Biol Chem 280:40282–40292

    Article  CAS  PubMed  Google Scholar 

  • Jakob CA, Burda P, Roth J, Aebi M (1998) Degradation of misfolded endoplasmic reticulum glycoproteins in Saccharomyces cerevisiae is determined by a specific oligosaccharide structure. J Cell Biol 142:1223–1233

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Jakob CA, Bodmer D, Spirig U, Battig P, Marcil A, Dignard D, Bergeron JJ, Thomas DY, Aebi M (2001) Htm1p, a mannosidase-like protein, is involved in glycoprotein degradation in yeast. EMBO Rep 2:423–430

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Johansen T, Lamark T (2011) Selective autophagy mediated by autophagic adapter proteins. Autophagy 7:279–296

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Johnston JA, Ward CL, Kopito RR (1998) Aggresomes: a cellular response to misfolded proteins. J Cell Biol 143:1883–1898

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Joshi S, Katiyar S, Lennarz WJ (2005) Misfolding of glycoproteins is a prerequisite for peptide: N-glycanase mediated deglycosylation. FEBS Lett 579:823–826

    Article  CAS  PubMed  Google Scholar 

  • Kabeya Y, Mizushima N, Ueno T, Yamamoto A, Kirisako T, Noda T, Kominami E, Ohsumi Y, Yoshimori T (2000) LC3, a mammalian homologue of yeast Apg8p, is localized in autophagosome membranes after processing. EMBO J 19:5720–5728

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Kaganovich D, Kopito R, Frydman J (2008) Misfolded proteins partition between two distinct quality control compartments. Nature 454:1088–1095

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Kawaguchi Y, Kovacs JJ, McLaurin A, Vance JM, Ito A, Yao TP (2003) The deacetylase HDAC6 regulates aggresome formation and cell viability in response to misfolded protein stress. Cell 115:727–738

    Article  CAS  PubMed  Google Scholar 

  • Kim W, Spear ED, Ng DT (2005) Yos9p detects and targets misfolded glycoproteins for ER-associated degradation. Mol Cell 19:753–764

    Article  CAS  PubMed  Google Scholar 

  • Kim I, Ahn J, Liu C, Tanabe K, Apodaca J, Suzuki T, Rao H (2006) The Png1-Rad23 complex regulates glycoprotein turnover. J Cell Biol 172:211–219

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Kirkin V, Lamark T, Sou YS, Bjorkoy G, Nunn JL, Bruun JA, Shvets E, McEwan DG, Clausen TH, Wild P, Bilusic I, Theurillat JP, Overvatn A, Ishii T, Elazar Z, Komatsu M, Dikic I, Johansen T (2009) A role for NBR1 in autophagosomal degradation of ubiquitinated substrates. Mol Cell 33:505–516

    Article  CAS  PubMed  Google Scholar 

  • Kitajima K, Suzuki T, Kouchi Z, Inoue S, Inoue Y (1995) Identification and distribution of peptide: N-glycanase (PNGase) in mouse organs. Arch Biochem Biophys 319:393–401

    Article  CAS  PubMed  Google Scholar 

  • Larsen KB, Lamark T, Overvatn A, Harneshaug I, Johansen T, Bjorkoy G (2010) A reporter cell system to monitor autophagy based on p62/SQSTM1. Autophagy 6:784–793

    Article  CAS  PubMed  Google Scholar 

  • Le Fourn V, Gaplovska-Kysela K, Guhl B, Santimaria R, Zuber C, Roth J (2009) Basal autophagy is involved in the degradation of the ERAD component EDEM1. Cell Mol Life Sci 66:1434–1445

    Article  PubMed  Google Scholar 

  • Le Fourn V, Park S, Jang S, Gaplovska-Kysela K, Guhl B, Lee Y, Cho JW, Zuber C, Roth J (2013) Large protein complexes retained in the ER are dislocated by non-COPII vesicles and degraded by selective autophagy. Cell Mol Life Sci 70:1985–2002

    Article  PubMed  Google Scholar 

  • Lee JY, Koga H, Kawaguchi Y, Tang W, Wong E, Gao YS, Pandey UB, Kaushik S, Tresse E, Lu J, Taylor JP, Cuervo AM, Yao TP (2010) HDAC6 controls autophagosome maturation essential for ubiquitin-selective quality-control autophagy. EMBO J 29:969–980

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Lucocq JM, Brada D, Roth J (1986) Immunolocalization of the oligosaccharide trimming enzyme glucosidase II. J Cell Biol 102:2137–2146

    Article  CAS  PubMed  Google Scholar 

  • Madura K (2004) Rad23 and Rpn10: perennial wallflowers join the melee. Trends Biochem Sci 29:637–640

    Article  CAS  PubMed  Google Scholar 

  • Metcalf DJ, Garcia-Arencibia M, Hochfeld WE, Rubinsztein DC (2012) Autophagy and misfolded proteins in neurodegeneration. Exp Neurol 238:22–28

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Misaghi S, Pacold ME, Blom D, Ploegh HL, Korbel GA (2004) Using a small molecule inhibitor of peptide: N-glycanase to probe its role in glycoprotein turnover. Chem Biol 11:1677–1687

    Article  CAS  PubMed  Google Scholar 

  • Misaghi S, Korbel GA, Kessler B, Spooner E, Ploegh HL (2006) z-VAD-fmk inhibits peptide: N-glycanase and may result in ER stress. Cell Death Differ 13:163–165

    Article  CAS  PubMed  Google Scholar 

  • Miyazaki A, Matsuo I, Hagihara S, Kakegawa A, Suzuki T, Ito Y (2009) Systematic synthesis and inhibitory activity of haloacetamidyl oligosaccharide derivatives toward cytoplasmic peptide: N-glycanase. Glycoconj J 26:133–140

    Article  CAS  PubMed  Google Scholar 

  • Mizushima N, Komatsu M (2011) Autophagy: renovation of cells and tissues. Cell 147:728–741

    Article  CAS  PubMed  Google Scholar 

  • Mizushima N, Levine B, Cuervo AM, Klionsky DJ (2008) Autophagy fights disease through cellular self-digestion. Nature 451:1069–1075

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Mizushima N, Yoshimori T, Levine B (2010) Methods in mammalian autophagy research. Cell 140:313–326

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Mizushima N, Yoshimori T, Ohsumi Y (2011) The role of Atg proteins in autophagosome formation. Annu Rev Cell Dev Biol 27:107–132

    Article  CAS  PubMed  Google Scholar 

  • Mosesson MW, Siebenlist KR, Meh DA (2001) The structure and biological features of fibrinogen and fibrin. Ann NY Acad Sci 936:11–30

    Article  CAS  PubMed  Google Scholar 

  • Nakatsukasa K, Nishikawa S, Hosokawa N, Nagata K, Endo T (2001) Mnl1p, an alpha -mannosidase-like protein in yeast Saccharomyces cerevisiae, is required for endoplasmic reticulum-associated degradation of glycoproteins. J Biol Chem 276:8635–8638

    Article  CAS  PubMed  Google Scholar 

  • Olivari S, Galli C, Alanen H, Ruddock L, Molinari M (2005) A novel stress-induced EDEM variant regulating endoplasmic reticulum-associated glycoprotein degradation. J Biol Chem 280:2424–2428

    Article  CAS  PubMed  Google Scholar 

  • Olivari S, Cali T, Salo KE, Paganetti P, Ruddock LW, Molinari M (2006) EDEM1 regulates ER-associated degradation by accelerating de-mannosylation of folding-defective polypeptides and by inhibiting their covalent aggregation. Biochem Biophys Res Commun 349:1278–1284

    Article  CAS  PubMed  Google Scholar 

  • Palade G (1975) Intracellular aspects of the process of protein biosynthesis. Science 189:347–358

    Article  CAS  PubMed  Google Scholar 

  • Pankiv S, Clausen TH, Lamark T, Brech A, Bruun JA, Outzen H, Overvatn A, Bjorkoy G, Johansen T (2007) p62/SQSTM1 binds directly to Atg8/LC3 to facilitate degradation of ubiquitinated protein aggregates by autophagy. J Biol Chem 282:24131–24145

    Article  CAS  PubMed  Google Scholar 

  • Pankiv S, Lamark T, Bruun JA, Overvatn A, Bjorkoy G, Johansen T (2010) Nucleocytoplasmic shuttling of p62/SQSTM1 and its role in recruitment of nuclear polyubiquitinated proteins to promyelocytic leukemia bodies. J Biol Chem 285:5941–5953

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Park H, Suzuki T, Lennarz WJ (2001) Identification of proteins that interact with mammalian peptide: N-glycanase and implicate this hydrolase in the proteasome-dependent pathway for protein degradation. Proc Natl Acad Sci USA 98:11163–11168

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Petiot A, Ogier-Denis E, Blommaart EF, Meijer AJ, Codogno P (2000) Distinct classes of phosphatidylinositol 3′-kinases are involved in signaling pathways that control macroautophagy in HT-29 cells. J Biol Chem 275:992–998

    Article  CAS  PubMed  Google Scholar 

  • Powis G, Bonjouklian R, Berggren MM, Gallegos A, Abraham R, Ashendel C, Zalkow L, Matter WF, Dodge J, Grindey G et al (1994) Wortmannin, a potent and selective inhibitor of phosphatidylinositol-3-kinase. Cancer Res 54:2419–2423

    CAS  PubMed  Google Scholar 

  • Quan EM, Kamiya Y, Kamiya D, Denic V, Weibezahn J, Kato K, Weissman JS (2008) Defining the glycan destruction signal for endoplasmic reticulum-associated degradation. Mol Cell 32:870–877

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Roth J (1982) The protein A-gold (pAg) technique—a qualitative and quantitative approach for antigen localization on thin sections. In: Bullock G, Petrusz P (eds) Techniques in immunocytochemistry, vol 1. Academic Press, London, pp 108–133

    Google Scholar 

  • Roth J (1989) Postembedding labeling on Lowicryl K4 M tissue sections: detection and modification of cellular components. In: Tartakoff AM (ed) Methods in cell biology, vol 31. Academic Press, San Diego, pp 513–551

    Google Scholar 

  • Roth J, Bendayan M, Orci L (1978) Ultrastructural localization of intracellular antigens by the use of protein A-gold complex. J Histochem Cytochem 26:1074–1081

    Article  CAS  PubMed  Google Scholar 

  • Roth J, Taatjes DJ, Warhol MJ (1989) Prevention of non-specific interactions of gold-labeled reagents on tissue sections. Histochemistry 92:47–56

    Article  CAS  PubMed  Google Scholar 

  • Roth J, Zuber C, Park S, Jang I, Lee Y, Kysela KG, Le Fourn V, Santimaria R, Guhl B, Cho JW (2010) Protein N-glycosylation, protein folding, and protein quality control. Mol Cells 30:497–506

    Article  CAS  PubMed  Google Scholar 

  • Sato BK, Schulz D, Do PH, Hampton RY (2009) Misfolded membrane proteins are specifically recognized by the transmembrane domain of the Hrd1p ubiquitin ligase. Mol Cell 34:212–222

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Simonsen A, Birkeland HC, Gillooly DJ, Mizushima N, Kuma A, Yoshimori T, Slagsvold T, Brech A, Stenmark H (2004) Alfy, a novel FYVE-domain-containing protein associated with protein granules and autophagic membranes. J Cell Sci 117:4239–4251

    Article  CAS  PubMed  Google Scholar 

  • Suzuki T (2007) Cytoplasmic peptide: N-glycanase and catabolic pathway for free N-glycans in the cytosol. Semin Cell Dev Biol 18:762–769

    Article  CAS  PubMed  Google Scholar 

  • Suzuki T, Seko A, Kitajima K, Inoue Y, Inoue S (1993) Identification of peptide: N-glycanase activity in mammalian-derived cultured cells. Biochem Biophys Res Commun 194:1124–1130

    Article  CAS  PubMed  Google Scholar 

  • Suzuki T, Park H, Kwofie MA, Lennarz WJ (2001) Rad23 provides a link between the Png1 deglycosylating enzyme and the 26 S proteasome in yeast. J Biol Chem 276:21601–21607

    Article  CAS  PubMed  Google Scholar 

  • Szathmary R, Bielmann R, Nita-Lazar M, Burda P, Jakob CA (2005) Yos9 protein is essential for degradation of misfolded glycoproteins and may function as lectin in ERAD. Mol Cell 19:765–775

    Article  CAS  PubMed  Google Scholar 

  • Szeto J, Kaniuk NA, Canadien V, Nisman R, Mizushima N, Yoshimori T, Bazett-Jones DP, Brumell JH (2006) ALIS are stress-induced protein storage compartments for substrates of the proteasome and autophagy. Autophagy 2:189–199

    Article  CAS  PubMed  Google Scholar 

  • Tamura T, Cormier JH, Hebert DN (2011) Characterization of early EDEM1 protein maturation events and their functional implications. J Biol Chem 286:24906–24915

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Tokuyasu K (1989) Use of poly(vinylpyrrolidone) and poly(vinyl alcohol) for cryoultramicrotomy. Histochem J 21:163–171

    Article  CAS  PubMed  Google Scholar 

  • Vadlamudi RK, Joung I, Strominger JL, Shin J (1996) p62, a phosphotyrosine-independent ligand of the SH2 domain of p56lck, belongs to a new class of ubiquitin-binding proteins. J Biol Chem 271:20235–20237

    Article  CAS  PubMed  Google Scholar 

  • Wang K, Klionsky DJ (2011) Mitochondria removal by autophagy. Autophagy 7:297–300

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Watanabe Y, Tanaka M (2011) p62/SQSTM1 in autophagic clearance of a non-ubiquitylated substrate. J Cell Sci 124:2692–2701

    Article  CAS  PubMed  Google Scholar 

  • Wipf P, Halter RJ (2005) Chemistry and biology of wortmannin. Org Biomol Chem 3:2053–2061

    Article  CAS  PubMed  Google Scholar 

  • Wolf DH (2011) The ubiquitin clan: a protein family essential for life. FEBS Lett 585:2769–2771

    Article  CAS  PubMed  Google Scholar 

  • Wong E, Cuervo AM (2012) Integration of clearance mechanisms: the proteasome and autophagy. In: Morimoto RI, Selkoe DJ, Kelly JW (eds) Protein homeostasis. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, pp 47–65

    Google Scholar 

  • Wu YT, Tan HL, Shui G, Bauvy C, Huang Q, Wenk MR, Ong CN, Codogno P, Shen HM (2010) Dual role of 3-methyladenine in modulation of autophagy via different temporal patterns of inhibition on class I and III phosphoinositide 3-kinase. J Biol Chem 285:10850–10861

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Zatloukal K, Stumptner C, Fuchsbichler A, Heid H, Schnoelzer M, Kenner L, Kleinert R, Prinz M, Aguzzi A, Denk H (2002) p62 Is a common component of cytoplasmic inclusions in protein aggregation diseases. Am J Pathol 160:255–263

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Zuber C, Roth J (2009) N-Glycosylation. In: Gabius H (ed) The sugar code. Wiley-VCH, Weinheim, pp 87–110

    Google Scholar 

  • Zuber C, Spiro MJ, Guhl B, Spiro RG, Roth J (2000) Golgi apparatus immunolocalization of endomannosidase suggests post-endoplasmic reticulum glucose trimming: implications for quality control. Mol Biol Cell 11:4227–4240

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Zuber C, Fan JY, Guhl B, Parodi A, Fessler JH, Parker C, Roth J (2001) Immunolocalization of UDP-glucose: glycoprotein glucosyltransferase indicates involvement of pre-Golgi intermediates in protein quality control. Proc Natl Acad Sci USA 98:10710–10715

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Zuber C, Cormier JH, Guhl B, Santimaria R, Hebert DN, Roth J (2007) EDEM1 reveals a quality control vesicular transport pathway out of the endoplasmic reticulum not involving the COPII exit sites. Proc Natl Acad Sci USA 104:4407–4412

    Article  CAS  PubMed Central  PubMed  Google Scholar 

Download references

Acknowledgments

We would like to thank Jon Soderholm (Yonsei University) for helpful comments on the manuscript. This work was supported by Korean Research WCU Grant R31-10086 (to J. R. and J. W. C.), the National Research Foundation of Korea by the Ministry of Education, Science and Technology (2010-0027736) (to J. R. and J. W. C.) and the Swiss National Science Foundation (to J. R.). Insook Jang is recipient of a fellowship from the Brain Korea 21 program.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jürgen Roth.

Additional information

Sujin Park and Insook Jang have contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Park, S., Jang, I., Zuber, C. et al. ERADication of EDEM1 occurs by selective autophagy and requires deglycosylation by cytoplasmic peptide N-glycanase. Histochem Cell Biol 142, 153–169 (2014). https://doi.org/10.1007/s00418-014-1204-3

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00418-014-1204-3

Keywords

Navigation