Skip to main content
Log in

Dynamic expression of the sodium-vitamin C co-transporters, SVCT1 and SVCT2, during perinatal kidney development

  • Original Paper
  • Published:
Histochemistry and Cell Biology Aims and scope Submit manuscript

Abstract

Isoform 1 of the sodium-vitamin C co-transporter (SVCT1) is expressed in the apical membrane of proximal tubule epithelial cells in adult human and mouse kidneys. This study is aimed at analyzing the expression and function of SVCTs during kidney development. RT-PCR and immunohistochemical analyses revealed that SVCT1 expression is increased progressively during postnatal kidney development. However, SVCT1 transcripts were barely detected, if not absent, in the embryonic kidney. Instead, the high-affinity transporter, isoform 2 (SVCT2), was strongly expressed in the developing kidney from E15; its expression decreased at postnatal stages. Immunohistochemical analyses showed a dynamic distribution of SVCT2 in epithelial cells during kidney development. In renal cortex tubular epithelial cells, intracellular distribution of SVCT2 was observed at E19 with distribution in the basolateral membrane at P1. In contrast, SVCT2 was localized to the apical and basolateral membranes between E17 and E19 in medullary kidney tubular cells but was distributed intracellularly at P1. In agreement with these findings, functional expression of SVCT2, but not SVCT1 was detected in human embryonic kidney-derived (HEK293) cells. In addition, kinetic analysis suggested that an ascorbate-dependent mechanism accounts for targeted SVCT2 expression in the developing kidney during medullary epithelial cell differentiation. However, during cortical tubular differentiation, SVCT1 was induced and localized to the apical membrane of tubular epithelial cells. SVCT2 showed a basolateral polarization only for the first days of postnatal life. These studies suggest that the uptake of vitamin C mediated by different SVCTs plays differential roles during the ontogeny of kidney tubular epithelial cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  • Astuya A, Caprile T, Castro M, Salazar K, Garcia Mde L, Reinicke K, Rodriguez F, Vera JC, Millan C, Ulloa V, Low M, Martinez F, Nualart F (2005) Vitamin C uptake and recycling among normal and tumor cells from the central nervous system. J Neurosci Res 79:146–156

    Article  PubMed  CAS  Google Scholar 

  • Baydas G, Yilmaz O, Celik S, Yasar A, Gursu MF (2002) Effects of certain micronutrients and melatonin on plasma lipid, lipid peroxidation, and homocysteine levels in rats. Arch Med Res 33:515–519

    Article  PubMed  CAS  Google Scholar 

  • Best KA, Holmes ME, Samson SE, Mwanjewe J, Wilson JX, Dixon SJ, Grover AK (2005) Ascorbate uptake in pig coronary artery endothelial cells. Mol Cell Biochem 271:43–49

    Article  PubMed  CAS  Google Scholar 

  • Bianchi J, Rose RC (1985) Transport of l-ascorbic acid and dehydro-l-ascorbic acid across renal cortical basolateral membrane vesicles. Biochim Biophys Acta 820:265–273

    Article  PubMed  CAS  Google Scholar 

  • Boyer JC, Campbell CE, Sigurdson WJ, Kuo SM (2005) Polarized localization of vitamin C transporters, SVCT1 and SVCT2, in epithelial cells. Biochem Biophys Res Commun 334:150–156

    Article  PubMed  CAS  Google Scholar 

  • Castro M, Caprile T, Astuya A, Millan C, Reinicke K, Vera JC, Vasquez O, Aguayo LG, Nualart F (2001) High-affinity sodium-vitamin C co-transporters (SVCT) expression in embryonic mouse neurons. J Neurochem 78:815–823

    Article  PubMed  CAS  Google Scholar 

  • Castro MA, Pozo M, Cortes C, Garcia Mde L, Concha II, Nualart F (2007) Intracellular ascorbic acid inhibits transport of glucose by neurons, but not by astrocytes. J Neurochem 102:773–782

    Article  PubMed  CAS  Google Scholar 

  • Castro T, Low M, Salazar K, Montecinos H, Cifuentes M, Yanez AJ, Slebe JC, Figueroa CD, Reinicke K, de los Angeles Garcia M, Henriquez JP, Nualart F (2008) Differential distribution of the sodium-vitamin C cotransporter-1 along the proximal tubule of the mouse and human kidney. Kidney Int 74:1278–1286

    Article  PubMed  CAS  Google Scholar 

  • Cortes-Campos C, Elizondo R, Llanos P, Uranga RM, Nualart F, Garcia MA (2011) MCT expression and lactate influx/efflux in tanycytes involved in glia-neuron metabolic interaction. PLoS ONE 6:e16411

    Article  PubMed  CAS  Google Scholar 

  • Daruwala R, Song J, Koh WS, Rumsey SC, Levine M (1999) Cloning and functional characterization of the human sodium-dependent vitamin C transporters hSVCT1 and hSVCT2. FEBS Lett 460:480–484

    Article  PubMed  CAS  Google Scholar 

  • Das S, Powers HJ (1998) The effects of maternal intake and gestational age on materno-fetal transport of vitamin C in the guinea-pig. Br J Nutr 80:485–491

    PubMed  CAS  Google Scholar 

  • Duarte TL, Lunec J (2005) Review: when is an antioxidant not an antioxidant? A review of novel actions and reactions of vitamin C. Free Radic Res 39:671–686

    Article  PubMed  CAS  Google Scholar 

  • Eldridge CF, Bunge MB, Bunge RP, Wood PM (1987) Differentiation of axon-related Schwann cells in vitro. I. Ascorbic acid regulates basal lamina assembly and myelin formation. J Cell Biol 105:1023–1034

    Article  PubMed  CAS  Google Scholar 

  • Englard S, Seifter S (1986) The biochemical functions of ascorbic acid. Annu Rev Nutr 6:365–406

    Article  PubMed  CAS  Google Scholar 

  • Esteban MA, Wang T, Qin B, Yang J, Qin D, Cai J, Li W, Weng Z, Chen J, Ni S, Chen K, Li Y, Liu X, Xu J, Zhang S, Li F, He W, Labuda K, Song Y, Peterbauer A, Wolbank S, Redl H, Zhong M, Cai D, Zeng L, Pei D (2010) Vitamin C enhances the generation of mouse and human induced pluripotent stem cells. Cell Stem Cell 6:71–79

    Article  PubMed  CAS  Google Scholar 

  • Faaland CA, Race JE, Ricken G, Warner FJ, Williams WJ, Holtzman EJ (1998) Molecular characterization of two novel transporters from human and mouse kidney and from LLC-PK1 cells reveals a novel conserved family that is homologous to bacterial and Aspergillus nucleobase transporters. Biochim Biophys Acta 1442:353–360

    Article  PubMed  CAS  Google Scholar 

  • Frei B, England L, Ames BN (1989) Ascorbate is an outstanding antioxidant in human blood plasma. Proc Natl Acad Sci USA 86:6377–6381

    Article  PubMed  CAS  Google Scholar 

  • Garcia CK, Brown MS, Pathak RK, Goldstein JL (1995) cDNA cloning of MCT2, a second monocarboxylate transporter expressed in different cells than MCT1. J Biol Chem 270:1843–1849

    Article  PubMed  CAS  Google Scholar 

  • Garcia MA, Salazar K, Millan C, Rodriguez F, Montecinos H, Caprile T, Silva C, Cortes C, Reinicke K, Vera JC, Aguayo LG, Olate J, Molina B, Nualart F (2005) Sodium vitamin C cotransporter SVCT2 is expressed in hypothalamic glial cells. Glia 50:32–47

    Article  Google Scholar 

  • Gess B, Lohmann C, Halfter H, Young P (2010) Sodium-dependent vitamin C transporter 2 (SVCT2) is necessary for the uptake of l-ascorbic acid into Schwann cells. Glia 58:287–299

    PubMed  Google Scholar 

  • Godoy A, Ormazabal V, Moraga-Cid G, Zuniga FA, Sotomayor P, Barra V, Vasquez O, Montecinos V, Mardones L, Guzman C, Villagran M, Aguayo LG, Onate SA, Reyes AM, Carcamo JG, Rivas CI, Vera JC (2007) Mechanistic insights and functional determinants of the transport cycle of the ascorbic acid transporter SVCT2. Activation by sodium and absolute dependence on bivalent cations. J Biol Chem 282:615–624

    Article  PubMed  CAS  Google Scholar 

  • Horster M, Huber S, Tschop J, Dittrich G, Braun G (1997) Epithelial nephrogenesis. Pflugers Arch 434:647–660

    Article  PubMed  CAS  Google Scholar 

  • Horster MF, Braun GS, Huber SM (1999) Embryonic renal epithelia: induction, nephrogenesis, and cell differentiation. Physiol Rev 79:1157–1191

    PubMed  CAS  Google Scholar 

  • Johnston L, Laverty G (2007) Vitamin C transport and SVCT1 transporter expression in chick renal proximal tubule cells in culture. Comp Biochem Physiol A Mol Integr Physiol 146:327–334

    Article  PubMed  Google Scholar 

  • Lee JY, Chang MY, Park CH, Kim HY, Kim JH, Son H, Lee YS, Lee SH (2003) Ascorbate-induced differentiation of embryonic cortical precursors into neurons and astrocytes. J Neurosci Res 73:156–165

    Article  PubMed  CAS  Google Scholar 

  • Lee JH, Oh CS, Mun GH, Kim JH, Chung YH, Hwang YI, Shin DH, Lee WJ (2006) Immunohistochemical localization of sodium-dependent l-ascorbic acid transporter 1 protein in rat kidney. Histochem Cell Biol 126:491–494

    Article  PubMed  CAS  Google Scholar 

  • Li Y, Schellhorn HE (2007) New developments and novel therapeutic perspectives for vitamin C. J Nutr 137:2171–2184

    PubMed  CAS  Google Scholar 

  • Liang WJ, Johnson D, Jarvis SM (2001) Vitamin C transport systems of mammalian cells. Mol Membr Biol 18:87–95

    Article  PubMed  CAS  Google Scholar 

  • Lopez-Lluch G, Buron MI, Alcain FJ, Quesada JM, Navas P (1998) Redox regulation of cAMP levels by ascorbate in 1,25-dihydroxy- vitamin D3-induced differentiation of HL-60 cells. Biochem J 331(Pt 1):21–27

    PubMed  CAS  Google Scholar 

  • Low M, Sandoval D, Aviles E, Perez F, Nualart F, Henriquez JP (2009) The ascorbic acid transporter SVCT2 is expressed in slow-twitch skeletal muscle fibres. Histochem Cell Biol 131:565–574

    Article  PubMed  CAS  Google Scholar 

  • Lutsenko EA, Carcamo JM, Golde DW (2004) A human sodium-dependent vitamin C transporter 2 isoform acts as a dominant-negative inhibitor of ascorbic acid transport. Mol Cell Biol 24:3150–3156

    Article  PubMed  CAS  Google Scholar 

  • Mahan DC, Ching S, Dabrowski K (2004) Developmental aspects and factors influencing the synthesis and status of ascorbic acid in the pig. Annu Rev Nutr 24:79–103

    Article  PubMed  CAS  Google Scholar 

  • Martin M, Ferrier B, Roch-Ramel F (1983) Renal excretion of ascorbic acid in the rat: a micropuncture study. Am J Physiol 244:F335–F341

    PubMed  CAS  Google Scholar 

  • May JM, Li L, Hayslett K, Qu ZC (2006) Ascorbate transport and recycling by SH-SY5Y neuroblastoma cells: response to glutamate toxicity. Neurochem Res 31:785–794

    Article  PubMed  CAS  Google Scholar 

  • McNulty AL, Vail TP, Kraus VB (2005) Chondrocyte transport and concentration of ascorbic acid is mediated by SVCT2. Biochim Biophys Acta 1712:212–221

    Article  PubMed  CAS  Google Scholar 

  • Mellors AJ, Nahrwold DL, Rose RC (1977) Ascorbic acid flux across mucosal border of guinea pig and human ileum. Am J Physiol 233:E374–E379

    PubMed  CAS  Google Scholar 

  • Mitsumoto Y, Liu Z, Klip A (1994) A long-lasting vitamin C derivative, ascorbic acid 2-phosphate, increases myogenin gene expression and promotes differentiation in L6 muscle cells. Biochem Biophys Res Commun 199:394–402

    Article  PubMed  CAS  Google Scholar 

  • Murad S, Grove D, Lindberg KA, Reynolds G, Sivarajah A, Pinnell SR (1981) Regulation of collagen synthesis by ascorbic acid. Proc Natl Acad Sci USA 78:2879–2882

    Article  PubMed  CAS  Google Scholar 

  • Nualart F, Hein S, Rodriguez EM, Oksche A (1991) Identification and partial characterization of the secretory glycoproteins of the bovine subcommissural organ-Reissner’s fiber complex. Evidence for the existence of two precursor forms. Brain Res Mol Brain Res 11:227–238

    Article  PubMed  CAS  Google Scholar 

  • Nualart F, Godoy A, Reinicke K (1999) Expression of the hexose transporters GLUT1 and GLUT2 during the early development of the human brain. Brain Res 824:97–104

    Article  PubMed  CAS  Google Scholar 

  • Orellana JA, Saez PJ, Cortes-Campos C, Elizondo RJ, Shoji KF, Contreras-Duarte S, Figueroa V, Velarde V, Jiang JX, Nualart F, Saez JC, Garcia MA (2012) Glucose increases intracellular free Ca(2+) in tanycytes via ATP released through connexin 43 hemichannels. Glia 60:53–68

    Article  PubMed  Google Scholar 

  • Padayatty SJ, Doppman JL, Chang R, Wang Y, Gill J, Papanicolaou DA, Levine M (2007) Human adrenal glands secrete vitamin C in response to adrenocorticotrophic hormone. Am J Clin Nutr 86:145–149

    PubMed  CAS  Google Scholar 

  • Poblete MT, Nualart F, del Pozo M, Perez JA, Figueroa CD (1996) Alpha 1-antitrypsin expression in human thyroid papillary carcinoma. Am J Surg Pathol 20:956–963

    Article  PubMed  CAS  Google Scholar 

  • Quesada JM, Lopez LG, Buron MI, Alcain FJ, Borrego F, Velde JP, Blanco I, Bouillon R, Navas P (1996) Ascorbate increases the 1,25 dihydroxyvitamin D3-induced monocytic differentiation of HL-60 cells. Calcif Tissue Int 59:277–282

    Article  PubMed  CAS  Google Scholar 

  • Rajan DP, Huang W, Dutta B, Devoe LD, Leibach FH, Ganapathy V, Prasad PD (1999) Human placental sodium-dependent vitamin C transporter (SVCT2): molecular cloning and transport function. Biochem Biophys Res Commun 262:762–768

    Article  PubMed  CAS  Google Scholar 

  • Rivera MN, Haber DA (2005) Wilms’ tumour: connecting tumorigenesis and organ development in the kidney. Nat Rev Cancer 5:699–712

    Article  PubMed  CAS  Google Scholar 

  • Savini I, Catani MV, Duranti G, Ceci R, Sabatini S, Avigliano L (2005) Vitamin C homeostasis in skeletal muscle cells. Free Radic Biol Med 38:898–907

    Article  PubMed  CAS  Google Scholar 

  • Savini I, Catani MV, Arnone R, Rossi A, Frega G, Del Principe D, Avigliano L (2007) Translational control of the ascorbic acid transporter SVCT2 in human platelets. Free Radic Biol Med 42:608–616

    Article  PubMed  CAS  Google Scholar 

  • Siliprandi L, Vanni P, Kessler M, Semenza G (1979) Na+-dependent, electroneutral l-ascorbate transport across brush border membrane vesicles from guinea pig small intestine. Biochim Biophys Acta 552:129–142

    Article  PubMed  CAS  Google Scholar 

  • Takanaga H, Mackenzie B, Hediger MA (2004) Sodium-dependent ascorbic acid transporter family SLC23. Pflugers Arch 447:677–682

    Article  PubMed  CAS  Google Scholar 

  • Toggenburger G, Hausermann M, Mutsch B, Genoni G, Kessler M, Weber F, Hornig D, O’Neill B, Semenza G (1981) Na+-dependent, potential-sensitive l-ascorbate transport across brush border membrane vesicles from kidney cortex. Biochim Biophys Acta 646:433–443

    Article  PubMed  CAS  Google Scholar 

  • Tsukaguchi H, Tokui T, Mackenzie B, Berger UV, Chen XZ, Wang Y, Brubaker RF, Hediger MA (1999) A family of mammalian Na+-dependent l-ascorbic acid transporters. Nature 399:70–75

    Article  PubMed  CAS  Google Scholar 

  • Wang H, Dutta B, Huang W, Devoe LD, Leibach FH, Ganapathy V, Prasad PD (1999) Human Na(+)-dependent vitamin C transporter 1 (hSVCT1): primary structure, functional characteristics and evidence for a non-functional splice variant. Biochim Biophys Acta 1461:1–9

    Article  PubMed  CAS  Google Scholar 

  • Wang Y, Mackenzie B, Tsukaguchi H, Weremowicz S, Morton CC, Hediger MA (2000) Human vitamin C (l-ascorbic acid) transporter SVCT1. Biochem Biophys Res Commun 267:488–494

    Article  PubMed  CAS  Google Scholar 

  • Wu X, Itoh N, Taniguchi T, Hirano J, Nakanishi T, Tanaka K (2004) Stimulation of differentiation in sodium-dependent vitamin C transporter 2 overexpressing MC3T3-E1 osteoblasts. Biochem Biophys Res Commun 317:1159–1164

    Article  PubMed  CAS  Google Scholar 

  • Yan J, Studer L, McKay RD (2001) Ascorbic acid increases the yield of dopaminergic neurons derived from basic fibroblast growth factor expanded mesencephalic precursors. J Neurochem 76:307–311

    Article  PubMed  CAS  Google Scholar 

  • Yanez AJ, Nualart F, Droppelmann C, Bertinat R, Brito M, Concha II, Slebe JC (2003) Broad expression of fructose-1,6-bisphosphatase and phosphoenolpyruvate carboxykinase provide evidence for gluconeogenesis in human tissues other than liver and kidney. J Cell Physiol 197:189–197

    Article  PubMed  CAS  Google Scholar 

  • Yu DH, Lee KH, Lee JY, Kim S, Shin DM, Kim JH, Lee YS, Oh SK, Moon SY, Lee SH (2004) Changes of gene expression profiles during neuronal differentiation of central nervous system precursors treated with ascorbic acid. J Neurosci Res 78:29–37

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by a grant from the Fondo Nacional de Ciencia y Tecnología (FONDECYT 1100396) to FN. We thank Dra. Marjet Heitzer for critical reading and editing of the manuscript and Mss. Ximena Koch for technical support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Francisco Nualart.

Additional information

F. Nualart and T. Castro contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nualart, F., Castro, T., Low, M. et al. Dynamic expression of the sodium-vitamin C co-transporters, SVCT1 and SVCT2, during perinatal kidney development. Histochem Cell Biol 139, 233–247 (2013). https://doi.org/10.1007/s00418-012-1027-z

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00418-012-1027-z

Keywords

Navigation