Skip to main content
Log in

Shocked monazite chronometry: integrating microstructural and in situ isotopic age data for determining precise impact ages

  • Original Paper
  • Published:
Contributions to Mineralogy and Petrology Aims and scope Submit manuscript

Abstract

Monazite is a robust geochronometer and occurs in a wide range of rock types. Monazite also records shock deformation from meteorite impact but the effects of impact-related microstructures on the U–Th–Pb systematics remain poorly constrained. We have, therefore, analyzed shock-deformed monazite grains from the central uplift of the Vredefort impact structure, South Africa, and impact melt from the Araguainha impact structure, Brazil, using electron backscatter diffraction, electron microprobe elemental mapping, and secondary ion mass spectrometry (SIMS). Crystallographic orientation mapping of monazite grains from both impact structures reveals a similar combination of crystal-plastic deformation features, including shock twins, planar deformation bands and neoblasts. Shock twins were documented in up to four different orientations within individual monazite grains, occurring as compound and/or type one twins in (001), (100), \(\left( 10\bar{1} \right)\), \(~\{110\}\), \(\left\{ 212 \right\},\) and type two (irrational) twin planes with rational shear directions in \([0\bar{1}\bar{1}]\) and \([\bar{1}\bar{1}0]\). SIMS U–Th–Pb analyses of the plastically deformed parent domains reveal discordant age arrays, where discordance scales with increasing plastic strain. The correlation between discordance and strain is likely a result of the formation of fast diffusion pathways during the shock event. Neoblasts in granular monazite domains are strain-free, having grown during the impact events via consumption of strained parent grains. Neoblastic monazite from the Inlandsee leucogranofels at Vredefort records a 207Pb/206Pb age of 2010 ± 15 Ma (2σ, n = 9), consistent with previous impact age estimates of 2020 Ma. Neoblastic monazite from Araguainha impact melt yield a Concordia age of 259 ± 5 Ma (2σ, n = 7), which is consistent with previous impact age estimates of 255 ± 3 Ma. Our results demonstrate that targeting discrete microstructural domains in shocked monazite, as identified through orientation mapping, for in situ U–Th–Pb analysis can date impact-related deformation. Monazite is, therefore, one of the few high-temperature geochronometers that can be used for accurate and precise dating of meteorite impacts.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Armstrong RA, Lana C, Uwe Reimold W, Gibson RL (2006) SHRIMP zircon age constraints on Mesoarchean crustal development in the Vredefort dome, central Kaapvaal Craton, South Africa. Geol Soc Am Spec Pap 405:233–253. doi:10.1130/2006.2405(13)

    Google Scholar 

  • Bischoff AA, Mayer JJ, Voors WA, Retief PF (1999) Geology of the Vredefort Dome. Council for Geoscience, Pretoria

    Google Scholar 

  • Bohor BF, Betterton WJ, Krogh TE (1993) Impact-shocked zircons: discovery of shock-induced textures reflecting increasing degrees of shock metamorphism. Earth Planet Sci Lett 119:419–424. doi:10.1016/0012-821X(93)90149-4

    Article  Google Scholar 

  • Buick IS, Clark C, Rubatto D, Hermann J, Pandit M, Hand M (2010) Constraints on the Proterozoic evolution of the Aravalli–Delhi Orogenic belt (NW India) from monazite geochronology and mineral trace element geochemistry. Lithos 120:511–528. doi:10.1016/j.lithos.2010.09.011

    Article  Google Scholar 

  • Catlos EJ (2013) Versatile Monazite: resolving geological records and solving challenges in materials science: generalizations about monazite: implications for geochronologic studies. Am Mineral 98:819–832. doi:10.2138/am.2013.4336

    Article  Google Scholar 

  • Cavosie AJ, Quintero RR, Radovan HA, Moser DE (2010) A record of ancient cataclysm in modern sand: Shock microstructures in detrital minerals from the Vaal River, Vredefort Dome, South Africa. Geol Soc Am Bull 122:1968–1980. doi:10.1130/b30187.1

    Article  Google Scholar 

  • Cavosie AJ, Erickson TM, Timms NE, Reddy SM, Talavera C, Montalvo SD, Pincus MR, Gibbon RJ, Moser D (2015a) A terrestrial perspective on using ex situ shocked zircons to date lunar impacts. Geology 43:999–1002. doi:10.1130/g37059.1

  • Cavosie AJ, Erickson TM, Timms NE (2015b) Nanoscale records of ancient shock deformation: Reidite (ZrSiO4) in sandstone at the Ordovician Rock Elm impact crater. Geology 43:315–318. doi:10.1130/g36489.1

  • Cavosie AJ, Timms NE, Erickson TM, Hagerty JJ, Hörz F (2016) Transformations to granular zircon revealed: Twinning, reidite, and ZrO2 in shocked zircon from Meteor Crater (Arizona, USA). Geology 44:703–706. doi:10.1130/g38043.1

    Article  Google Scholar 

  • Cavosie AJ, Erickson TM, Montalvo P, Prado D, Cintron N, Gibbon RJ (in press) The Rietputs Formation in South Africa: a Pleistocene fluvial archive of meteorite impact unique to the Kaapvaal craton. In: Moser DE, Corfu F, Reddy SM, Darling J, Tait K (eds) Microstructural Geochronology; Lattice to Atom-Scale Records of Planetary Evolution. AGU Monograph. AGU-Wiley, New Jersey

  • D’Abzac F-X, Seydoux-Guillaume A-M, Chmeleff J, Datas L, Poitrasson F (2012) In situ characterization of infrared femtosecond laser ablation in geological samples. Part A: the laser induced damage. J Anal At Spectrom 27:99–107. doi:10.1039/C1JA10153F

    Article  Google Scholar 

  • Darling JR, Moser DE, Barker IR, Tait KT, Chamberlain KR, Schmitt AK, Hyde BC (2016) Variable microstructural response of baddeleyite to shock metamorphism in young basaltic shergottite NWA 5298 and improved U–Pb dating of Solar System events. Earth Planet Sci Lett 444:1–12. doi:10.1016/j.epsl.2016.03.032

    Article  Google Scholar 

  • Deutsch A, Schärer U (1990) Isotope systematics and shock-wave metamorphism: I. U–Pb in zircon, titanite and monazite, shocked experimentally up to 59 GPa. Geochim Cosmochim Acta 54:3427–3434. doi:10.1016/0016-7037(90)90295-V

    Article  Google Scholar 

  • Engelhardt WV, Matthäi SK, Walzebuck J (1992) Araguainha impact crater, Brazil. I. The interior part of the uplift. Meteoritics 27:442–457. doi:10.1111/j.1945-5100.1992.tb00226.x

    Article  Google Scholar 

  • Earth Impact Database (2011) Planetary and space science centre. University of New Brunswick. http://www.passc.net/EarthImpactDatabase/. Accessed 2017

  • Erickson TM, Cavosie AJ, Moser DE, Barker IR, Radovan HA (2013a) Correlating planar microstructures in shocked zircon from the Vredefort Dome at multiple scales: crystallographic modeling, external and internal imaging, and EBSD structural analysis. Am Mineral 98:53–65. doi:10.2138/am.2013.4165

    Article  Google Scholar 

  • Erickson TM, Cavosie AJ, Moser DE, Barker IR, Radovan HA, Wooden J (2013b) Identification and provenance determination of distally transported, Vredefort-derived shocked minerals in the Vaal River, South Africa using SEM SHRIMP-RG techniques. Geochim Cosmochim Acta 107:170–188. doi:10.1016/j.gca.2012.12.008

    Article  Google Scholar 

  • Erickson TM, Pearce MA, Taylor RJM, Timms NE, Clark C, Reddy SM, Buick IS (2015) Deformed monazite yields high-temperature tectonic ages. Geology 43:383–386. doi:10.1130/g36533.1

    Article  Google Scholar 

  • Erickson TM, Cavosie AJ, Pearce MA, Timms NE, Reddy SM (2016a) Empirical constraints on shock features in monazite using shocked zircon inclusions. Geology 44:635–638. doi:10.1130/g37979.1

    Article  Google Scholar 

  • Erickson TM, Reddy SM, Timms NE, Pearce MA, Taylor RJM, Clark C, Buick IS (2016b) Deformed monazite yields high-temperature tectonic ages: REPLY. Geology 44:e378. doi:10.1130/g37474y.1

    Article  Google Scholar 

  • Erickson TM, Pearce MA, Reddy SM, Timms NE, Cavosie AJ, Bourdet J, Rickard WDA, Nemchin AA (2017) Microstructural constraints on the mechanisms of the transformation to reidite in naturally shocked zircon. Contrib Mineral Petrol 172:6. doi:10.1007/s00410-016-1322-0

    Article  Google Scholar 

  • Fletcher IR, McNaughton NJ, Davis WJ, Rasmussen B (2010) Matrix effects and calibration limitations in ion probe U–Pb and Th–Pb dating of monazite. Chem Geol 270:31–44. doi:10.1016/j.chemgeo.2009.11.003

    Article  Google Scholar 

  • Flowers RM, Moser DE, Hart R (2003) Evolution of the Amphibolite-Granulite facies transition exposed by the Vredefort impact structure, Kaapvaal Craton, South Africa. J Geol 111:455–470. doi:10.1086/375282

    Article  Google Scholar 

  • French BM, Koeberl C (2010) The convincing identification of terrestrial meteorite impact structures: what works, what doesn’t, and why. Earth Sci Rev 98:123–170. doi:10.1016/j.earscirev.2009.10.009

    Article  Google Scholar 

  • Gibson RL (2002) Impact-induced melting of Archean granulites in the Vredefort Dome, South Africa. I: anatexis of metapelitic granulites. J Metamorph Geol 20:57–70. doi:10.1046/j.0263-4929.2001.00358.x

    Article  Google Scholar 

  • Gibson RL, Reimold WU (2005) Shock pressure distribution in the Vredefort impact structure, South Africa. Geol Soc Am Spec Pap 384:329–349. doi:10.1130/0-8137-2384-1.329

    Google Scholar 

  • Gibson RL, Armstrong RA, Reimold WU (1997) The age and thermal evolution of the Vredefort impact structure: a single-grain U·Pb zircon study. Geochim Cosmochim Acta 61:1531–1540. doi:10.1016/S0016-7037(97)00013-6

    Article  Google Scholar 

  • Gibson RL, Uwe Reimold W, Stevens G (1998) Thermal-metamorphic signature of an impact event in the Vredefort dome, South Africa. Geology 26:787–790. doi:10.1130/0091-7613(1998)026<0787:tmsoai>2.3.co;2

    Article  Google Scholar 

  • Grieve RA, Dence M, Robertson P (1977) Cratering processes-As interpreted from the occurrence of impact melts. In: Roddy DJ, Pepin RO, Merril RB (eds) Impact and explosion cratering: Planetary and terrestrial implications. Paragamon, New York, pp 791–814

    Google Scholar 

  • Hart R, Moser D, Andreoli M (1999) Archean age for the granulite facies metamorphism near the center of the Vredefort structure, South Africa. Geology 27:1091–1094. doi:10.1130/0091-7613(1999)027<1091:aaftgf>2.3.co;2

    Article  Google Scholar 

  • Hay RS, Marshall DB (2003) Deformation twinning in monazite. Acta Mater 51:5235–5254. doi:10.1016/s1359-6454(03)00305-7

    Article  Google Scholar 

  • Ivanov BA (2005) Numerical modeling of the largest terrestrial meteorite craters. Sol Syst Res 39:381–409. doi:10.1007/s11208-005-0051-0

    Article  Google Scholar 

  • Jourdan F, Renne PR, Reimold WU (2009) An appraisal of the ages of terrestrial impact structures. Earth Planet Sci Lett 286:1–13. doi:10.1016/j.epsl.2009.07.009

    Article  Google Scholar 

  • Jourdan F, Reimold WU, Deutsch A (2012) Dating terrestrial impact structures. Elements 8:49–53 doi:10.2113/gselements.8.1.49

    Article  Google Scholar 

  • Kamo SL, Reimold WU, Krogh TE, Colliston WP (1996) A 2.023 Ga age for the Vredefort impact event and a first report of shock metamorphosed zircons in pseudotachylitic breccias and Granophyre. Earth Planet Sci Lett 144:369–387. doi:10.1016/S0012-821X(96)00180-X

    Article  Google Scholar 

  • Kusaba K, Syono Y, Kikuchi M, Fukuoka K (1985) Shock behavior of zircon: phase transition to scheelite structure and decomposition. Earth Planet Sci Lett 72:433–439. doi:10.1016/0012-821X(85)90064-0

    Article  Google Scholar 

  • Lana C, Filho CRS, Marangoni YR, Yokoyama E, Trindade RIF, Tohver E, Reimold WU (2007) Insights into the morphology, geometry, and post-impact erosion of the Araguainha peak-ring structure, central Brazil. Geol Soc Am Bull 119:1135–1150. doi:10.1130/b26142.1

    Article  Google Scholar 

  • Lana C, Filho CRS, Marangoni YR, Yokoyama E, Trindade RIF, Tohver E, Reimold WU (2008) Structural evolution of the 40 km wide Araguainha impact structure, central Brazil. Meteorit Planet Sci 43:701–716. doi:10.1111/j.1945-5100.2008.tb00679.x

    Article  Google Scholar 

  • Lang M, Zhang F, Lian J, Trautmann C, Neumann R, Ewing RC (2008) Irradiation-induced stabilization of zircon (ZrSiO4) at high pressure. Earth Planet Sci Lett 269:291–295. doi:10.1016/j.epsl.2008.02.027

    Article  Google Scholar 

  • Langenhorst F, Deutsch A (2012) Shock metamorphism of minerals. Elements 8:31–36 doi:10.2113/gselements.8.1.31

    Article  Google Scholar 

  • Leroux H, Reimold WU, Koeberl C, Hornemann U, Doukhan JC (1999) Experimental shock deformation in zircon: a transmission electron microscopic study. Earth Planet Sci Lett 169:291–301. doi:10.1016/S0012-821X(99)00082-5

    Article  Google Scholar 

  • Machado R, Lana C, Stevens G, Filho CRS, Reimold WU, McDonald I (2009) Generation, mobilization and crystallization of impact-induced alkali-rich melts in granitic target rocks: evidence from the Araguainha impact structure, central Brazil. Geochim Cosmochim Acta 73:7183–7201. doi:10.1016/j.gca.2009.08.029

    Article  Google Scholar 

  • Meldrum A, Boatner LA, Weber WJ, Ewing RC (1998) Radiation damage in zircon and monazite. Geochim Cosmochim Acta 62:2509–2520. doi:10.1016/S0016-7037(98)00174-4

    Article  Google Scholar 

  • Melosh J (1989) Impact cratering: a geologic process. In: Oxford Monographs on Geology and Geophysics 11, Oxford University Press, New York, 253 p

  • Montalvo SD, Cavosie AJ, Erickson TM, Talavera C (2017) Fluvial transport of impact evidence from cratonic interior to passive margin: vredefort-derived shocked zircon on the Atlantic coast of South Africa. Am Mineral 102. doi:10.2138/am-2017-5857CCBYNCND

  • Morozova I (2015) Strength study of zircon under high pressure, Thesis. The University of Western Ontario, 112 p

  • Moser DE (1997) Dating the shock wave and thermal imprint of the giant Vredefort impact, South Africa. Geology 25:7–10. doi:10.1130/0091-7613(1997)025<0007:dtswat>2.3.co;2

    Article  Google Scholar 

  • Moser DE, Flowers RM, Hart RJ (2001) Birth of the Kaapvaal tectosphere 3.08 billion years ago. Science 291:465–468. doi:10.1126/science.291.5503.465

    Article  Google Scholar 

  • Moser DE, Davis WJ, Reddy SM, Flemming RL, Hart RJ (2009) Zircon U–Pb strain chronometry reveals deep impact-triggered flow. Earth Planet Sci Lett 277:73–79. doi:10.1016/j.epsl.2008.09.036

    Article  Google Scholar 

  • Moser DE, Cupelli CL, Barker IR, Flowers RM, Bowman JR, Wooden J, Hart JR (2011) New zircon shock phenomena and their use for dating and reconstruction of large impact structures revealed by electron nanobeam (EBSD, CL. EDS) isotopic U–Pb (U–Th)/He analysis of the Vredefort dome. Can J Earth Sci 48:117–139. doi:10.1139/e11-011

    Article  Google Scholar 

  • Niihara T, Kaiden H, Misawa K, Sekine T, Mikouchi T (2012) U–Pb isotopic systematics of shock-loaded and annealed baddeleyite: implications for crystallization ages of Martian meteorite shergottites. Earth Planet Sci Lett 341–344:195–210. doi:10.1016/j.epsl.2012.06.002

    Article  Google Scholar 

  • Piazolo S, Austrheim H, Whitehouse M (2012) Brittle-ductile microfabrics in naturally deformed zircon: Deformation mechanisms and consequences for U–Pb dating. Am Mineral 97:1544–1563. doi:10.2138/am.2012.3966

    Article  Google Scholar 

  • Reddy SM, Timms NE, Pantleon W, Trimby P (2007) Quantitative characterization of plastic deformation of zircon and geological implications. Contrib Mineral Petrol 153:625–645. doi:10.1007/s00410-006-0174-4

    Article  Google Scholar 

  • Reddy SM, Johnson TE, Fischer S, Rickard W, Taylor RJM (2015) Precambrian redite discovered in shocked zircon from the Stac Fada impactite, Scotland. Geology 43:899–902. doi:10.1130/g37066.1

    Article  Google Scholar 

  • Reimold WU, Pybus GQJ, Kruger FJ, Layer PW, Koeberl C (2000) The Anna’s Rust Sheet and related gabbroic intrusions in the Vredefort Dome-Kibaran magmatic event on the Kaapvaal Craton and beyond? J Afr Earth Sci 31:499–521. doi:10.1016/S0899-5362(00)80004-4

    Article  Google Scholar 

  • Schärer U, Deutsch A (1990) Isotope systematics and shock-wave metamorphism: II. U–Pb and Rb–Sr in naturally shocked rocks; the Haughton Impact Structure, Canada. Geochim Cosmochim Acta 54:3435–3447. doi:10.1016/0016-7037(90)90296-W

    Article  Google Scholar 

  • Schmieder M, Tohver E, Jourdan F, Denyszyn SW, Haines PW (2015) Zircons from the Acraman impact melt rock (South Australia): Shock metamorphism, U–Pb and 40Ar/39Ar systematics, and implications for the isotopic dating of impact events. Geochim Cosmochim Acta 161:71–100. doi:10.1016/j.gca.2015.04.021

    Article  Google Scholar 

  • Seydoux-Guillaume A-M, Wirth R, Deutsch A, Schärer U (2004) Microstructure of 24–1928 Ma concordant monazites; implications for geochronology and nuclear waste deposits. Geochim Cosmochim Acta 68:2517–2527. doi:10.1016/j.gca.2003.10.042

    Article  Google Scholar 

  • Seydoux-Guillaume A-M, Freydier R, Poitrasson F, D’Abzac F-x, Wirth R, Datas L (2010) Dominance of mechanical over thermally induced damage during femtosecond laser ablation of monazite. Eur J Mineral 22:235–244. doi:10.1127/0935-1221/2010/0022-2001

    Article  Google Scholar 

  • Silva D, Lana C, de Souza Filho CR (2016) Petrographic and geochemical characterization of the granitic rocks of the Araguainha impact crater, Brazil. Meteorit Planet Sci 51:443–467. doi:10.1111/maps.12601

    Article  Google Scholar 

  • Stacey JS, Kramers JD (1975) Approximation of terrestrial lead isotope evolution by a two-stage model. Earth Planet Sci Lett 26(2):207–221. doi:10.1016/0012-821X(75)90088-6

    Article  Google Scholar 

  • Stepto D (1990) The geology and gravity field in the central core of the Vredefort structure. Tectonophysics 171:75–103. doi:10.1016/0040-1951(90)90091-L

    Article  Google Scholar 

  • Stöffler D, Langenhorst F (1994) Shock metamorphism of quartz in nature and experiment: I. Basic observation and theory*. Meteoritics 29:155–181. doi:10.1111/j.1945-5100.1994.tb00670.x

    Article  Google Scholar 

  • Timms NE, Reddy SM, Healy D, Nemchin AA, Grange ML, Pidgeon RT, Hart R (2012) Resolution of impact-related microstructures in lunar zircon: a shock-deformation mechanism map. Meteorit Planet Sci 47:120–141. doi:10.1111/j.1945-5100.2011.01316.x

    Google Scholar 

  • Timms NE, Erickson TM, Pearce MA, Cavosie AJ, Schmieder M, Tohver E, Reddy SM, Zanetti MR, Nemchin AA, Wittmann A (2017) A pressure-temperature phase diagram for zircon at extreme conditions. Earth Sci Rev 165:185–202 doi:10.1016/j.earscirev.2016.12.008

    Article  Google Scholar 

  • Timms NE, Healy D, Erickson TM, Nemchin AA, Pearce MA, Cavosie AJ (in press) Role of elastic anisotropy in the development of deformation microstructures in zircon. In: Moser DE, Corfu F, Reddy SM, Darling J, Tait K (eds) Microstructural geochronology; lattice to atom-scale records of planetary evolution. AGU Monograph. AGU-Wiley

  • Tohver E, Lana C, Cawood PA, Fletcher IR, Jourdan F, Sherlock S, Rasmussen B, Trindade RIF, Yokoyama E, Souza Filho CR, Marangoni Y (2012) Geochronological constraints on the age of a Permo–Triassic impact event: U–Pb and 40Ar/39Ar results for the 40 km Araguainha structure of central Brazil. Geochim Cosmochim Acta 86:214–227. doi:10.1016/j.gca.2012.03.005

    Article  Google Scholar 

  • Wawrzenitz N, Krohe A, Rhede D, Romer RL (2012) Dating rock deformation with monazite: The impact of dissolution precipitation creep. Lithos 134–135:52–74. doi:10.1016/j.lithos.2011.11.025

    Article  Google Scholar 

  • Wittmann A, Kenkmann T, Schmitt RT, Stöffler D (2006) Shock-metamorphosed zircon in terrestrial impact craters. Meteorit Planet Sci 41:433–454. doi:10.1111/j.1945-5100.2006.tb00472.x

    Article  Google Scholar 

Download references

Acknowledgements

TME acknowledges financial support from an International Post-Graduate Research Grant from Curtin University Office of Research and Development and from the ARC Core to Crust Fluid System COE. The ARC (LE130100053), Curtin University, University of Western Australia and CSIRO are acknowledged for funding the Tescan Mira3 FEG-SEM housed in the John De Laeter Centre’s Microscopy and Microanalysis Facility. The authors would like to thank Ben Wade at Adelaide Microscopy for collecting the EPMA maps. We would like to thank two anonymous reviewers and editor Prof. O. Müntener for the detailed and insightful comments that have substantially improved this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Timmons M. Erickson.

Additional information

Communicated by Othmar Müntener.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Erickson, T.M., Timms, N.E., Kirkland, C.L. et al. Shocked monazite chronometry: integrating microstructural and in situ isotopic age data for determining precise impact ages. Contrib Mineral Petrol 172, 11 (2017). https://doi.org/10.1007/s00410-017-1328-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00410-017-1328-2

Keywords

Navigation