Skip to main content
Log in

Quantitative characterization of plastic deformation of zircon and geological implications

  • Original Paper
  • Published:
Contributions to Mineralogy and Petrology Aims and scope Submit manuscript

Abstract

The deformation-related microstructure of an Indian Ocean zircon hosted in a gabbro deformed at amphibolite grade has been quantified by electron backscatter diffraction. Orientation mapping reveals progressive variations in intragrain crystallographic orientations that accommodate 20° of misorientation in the zircon crystal. These variations are manifested by discrete low-angle (<4°) boundaries that separate domains recording no resolvable orientation variation. The progressive nature of orientation change is documented by crystallographic pole figures which show systematic small circle distributions, and disorientation axes associated with 0.5–4° disorientation angles, which lie parallel to rational low index crystallographic axes. In the most distorted part of the grain (area A), this is the [100] crystal direction. A quaternion analysis of orientation correlations confirms the [100] rotation axis inferred by stereographic inspection, and reveals subtle orientation variations related to the local boundary structure. Microstructural characteristics and orientation data are consistent with the low-angle boundaries having a tilt boundary geometry with dislocation line [100]. This tilt boundary is most likely to have formed by accumulation of edge dislocations associated with a 〈001〉{100} slip system. Analysis of the energy associated with these dislocations suggest they are energetically more favorable than TEM verified 〈010〉{100} slip. Analysis of minor boundaries in area A indicates deformation by either \({{\left[ {0\bar{1}0} \right]}}\) (001) edge, or [100](100) and [001](100) screw dislocations. In other parts of the grain, \({{\left[ {1\bar{1}0} \right]}}\) cross slip on (111), \({{\left({11\bar{1}}\right)}}\) and (112) planes seems likely. These data provide the first detailed microstructural analysis of naturally deformed zircon and indicate ductile crystal-plastic deformation of zircon by the formation and migration of dislocations into low-angle boundaries. Minimum estimates of dislocation density in the low-angle boundaries are of the order of ∼3.1010 cm−2. This value is sufficiently high to have a marked effect on the geochemical behavior of zircon, via enhanced bulk diffusion and increased dissolution rates. Therefore, crystal plasticity in zircon may have significant implications for the interpretation of radiometric ages, isotopic discordance and trace element mobility during high-grade metamorphism and melting of the crust.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  • Ashby MF (1970) The deformation of plastically non-homogenous materials. Philos Mag 21:399–424

    Google Scholar 

  • Bach W, Humphris SE, Erzinger J, Dick HJB, Alt JC, Niu Y (2001) The geochemical consequences of late-stage low-grade alteration of lower ocean crust at the SW Indian Ridge: results from ODP Hole 735B (Leg 176). Geochim Cosmochim Acta 65:3267–3287

    Article  Google Scholar 

  • Baker DR, Conte AM, Freda C, Ottolini L (2002) The effect of halogens on Zr diffusion and zircon dissolution in hydrous metaluminous granitic melts. Contrib Mineral Petrol 142:666–678

    Google Scholar 

  • Balluffi RW (1970) On measurements of self-diffusion rates along dislocations in F.C.C. metals. Phys Stat Sol 42:11–34

    Google Scholar 

  • Belousova EA, Griffen WL, O’Reilly SY, Fisher NI (2002) Igneous zircon: trace element composition as an indicator of source rock type. Contrib Mineral Petrol 143:602–622

    Google Scholar 

  • Bestmann M, Prior DJ (2003) Intragranular dynamic recrystallisation in naturally deformed calcite marble: diffusion accommodated grain boundary sliding as a result of subgrain rotation recrystallization. J Struct Geol 25:1597–1613

    Article  Google Scholar 

  • Bhimasenachar J, Venkataratnam G (1955) Elastic constants of zircon. J Acoust Soc Am 27:922

    Article  Google Scholar 

  • Blum AE, Yund RA, Lasaga AC (1990) The effect of dislocation density on the dissolution rate of quartz. Geochim Cosmochim Acta 54:283–297

    Article  Google Scholar 

  • Bosworth W (1981) Strain-induced preferential dissolution of halite. Tectonophysics 78:509–525

    Article  Google Scholar 

  • Boullier AM (1980) A preliminary study on the behaviour of brittle minerals in a ductile matrix: example of zircons and feldspars. J Struct Geol 2:211–217

    Article  Google Scholar 

  • Boyle AP, Prior DJ, Banham MH, Timms NE (1998) Plastic deformation of metamorphic pyrite: new evidence from electron backscatter diffraction and forescatter orientation-contrast imaging. Miner Deposita 34:71–81

    Article  Google Scholar 

  • Cawood PA, Sircombe K, Nemchin AA, Freeman M (2003) Linking source and sedimentary basin: detrital zircon record of sediment flux along a modern river system and implications for provenance studies. Earth Planet Sci Lett 210:259–268

    Article  Google Scholar 

  • Cherniak DJ, Watson EB (2001) Pb diffusion in zircon. Chem Geol 172:5–24

    Article  Google Scholar 

  • Cherniak DJ, Watson EB (2003) Diffusion in zircon. In: Hanchar JM, Hoskin PWO (eds) Zircon. Reviews in mineralogy and geochemistry, vol 53. Mineralogical Society of America, Washington, pp 113–143

  • Cherniak DJ, Hanchar JM, Watson EB (1997a) Rare-earth diffusion in zircon. Chem Geol 134:289–301

    Article  Google Scholar 

  • Cherniak DJ, Hanchar JM, Watson EB (1997b) Diffusion of tetravalent cations in zircon. Contrib Mineral Petrol 127:383–390

    Article  Google Scholar 

  • Chichagov AV, Varlamov DA, Dilanyan RA, Dokina TN, Drozhzhina NA, Samokhvalova OL, Ushakovskaya TV (2001) MINCRYST: a Crystallographic Database for Minerals, Local and Network (WWW) Versions. Crystallogr Rep 46:876–879

    Article  Google Scholar 

  • Collins AS, Reddy SM, Buchan C, Mruma A (2004) Temporal constraints on Palaeoproterozoic eclogite formation and exhumation (Usagaran Orogen, Tanzania). Earth Planet Sci Lett 224:175–192

    Article  Google Scholar 

  • Connelly JN (2000) Degree of preservation of igneous zonation in zircon as a signpost for concordancy in U/Pb geochronology. Chem Geol 172:25–39

    Article  Google Scholar 

  • Cottrell AH (1964) The mechanical properties of matter, Wiley, New York, p 223

  • DeCelles PG, Gehrels GE, Quade J, LaReau B, Spurlin M (2000) Tectonic implications of U–Pb zircon ages of the Himalayan Orogenic Belt in Nepal. Science 288:497–499

    Article  Google Scholar 

  • Dempster TJ, Hay DC, Bluck BJ (2004) Zircon growth in slate. Geology 32:221–224

    Article  Google Scholar 

  • Dick HJB, Bach W, Bideau D, Gee JS, Haggas S, Hertogen JGH, Hirth G, Holm PM, Ildefonse B, Iturrino GJ, John BE, Kelley DS, Kikawa E, Kingdon A, LeRoux PJ, Maeda J, Meyer PS, Miller DJ, Naslund HR, Niu YL, Robinson PT, Snow J, Stephen RA, Trimby PW, Worm HU, Yoshinobu A, Natland JH, Alt JC (2000) A long in situ section of the lower ocean crust: results of ODP Leg 176 drilling at the Southwest Indian Ridge. Earth Planet Sci Lett 179:31–51

    Article  Google Scholar 

  • El-Dasher BS, Adams BL, Rollett AD (2003) Viewpoint: experimental recovery of geometrically necessary dislocation density in polycrystals. Scripta Mater 48:141–145

    Article  Google Scholar 

  • Fitzsimons ICW, Kinny PD, Harley SL (1997) Two stages of zircon and monazite growth in anatectic leucogneiss: SHRIMP constraints on the duration and intensity of Pan-African metamorphism in Prydz Bay, East Antarctica. Terra Nova 9:47–51

    Article  Google Scholar 

  • Fleming S, Rohl AL (2005) GDIS: a visualization program for molecular and periodic systems. Z Kristallogr 220:580–584

    Article  Google Scholar 

  • Foreman AJE (1955) Dislocation energies in anisotropic crystals. Acta Metal 3:322–330

    Article  Google Scholar 

  • Gebauer D, Grünenfelder M (1976) U–Pb zircon and Rb–Sr whole-rock dating of low grade metasediments. Example: Montagne Noire (Southern France). Contrib Mineral Petrol 59:13–32

    Article  Google Scholar 

  • Geisler T (2002) Isothermal annealing of partially metamict zircon: evidence for a three-stage recovery process. Phys Chem Miner 29:420–429

    Article  Google Scholar 

  • Geisler T, Kurtz R, Pidgeon RT, van Bronswijk W (2002) Transport of uranium, thorium, and lead in metamict zircon under low-temperature hydrothermal conditions. Chem Geol 191:141–154

    Article  Google Scholar 

  • Grimmer H (1980) A unique description of the relative orientation of neighbouring grains. Acta Crystallogr A36:382–389

    Article  Google Scholar 

  • Gulson BL, Krogh TE (1973) Old lead components in the young Bergell Massif, south-east Swiss Alps. Contrib Mineral Petrol 40:239–252

    Article  Google Scholar 

  • Hawkesworth CJ, Kemp AIS (2006) Using hafnium and oxygen isotopes in zircons to unravel the record of crustal evolution. Chem Geol 226:144–162

    Article  Google Scholar 

  • Hazen RM, Finger LW (1979) Crystal structure and compressibility of zircon at high pressure. Am Mineral 64:196–201

    Google Scholar 

  • Hoskin PWO, Ireland TR (2000) Rare earth element chemistry of zircon and its use as a provenance indicator. Geology 28:627–630

    Article  Google Scholar 

  • Hoskin PWO, Schaltegger U (2003) The composition of zircon and igneous and metamorphic petrogenesis. In: Hanchar JM, Hoskin PWO (eds) Zircon. Reviews in mineralogy and geochemistry, vol 53. pp 27–62

  • Humphreys FJ, Bate PS, Hurley PJ (2001) Orientation averaging of electron backscattered diffraction data. J Microsc 201:50–58

    Article  Google Scholar 

  • John BE, Foster DA, Murphy JM, Cheadle MJ, Baines AG, Fanning CM, Copeland P (2004) Determining the cooling history of in situ lower oceanic crust—Atlantis Bank, SW Indian Ridge. Earth Planet Sci Lett 222:145–160

    Article  Google Scholar 

  • Kenkmann T (2000) Processes controlling the shrinkage of porphyroclasts in gabbroic shear zones. J Struct Geol 22:471–487

    Article  Google Scholar 

  • Klinger L, Rabkin E (1999) Beyond the Fisher model of grain boundary diffusion: effect of structural inhomogeneity in the bulk. Acta Mater 47:725–734

    Article  Google Scholar 

  • Lanyon R, Black LP, Seitz HM (1993) U–Pb zircon dating of mafic dykes and its application to the Proterozoic geological history of the Vestfold Hills, East Antarctica. Contrib Mineral Petrol 115:184–203

    Article  Google Scholar 

  • Lee JKW (1995) Multipath diffusion in geochronology. Contrib Mineral Petrol 120:60–82

    Google Scholar 

  • Lee JKW, Williams IS, Ellis DJ (1997) Pb, U and Th diffusion in natural zircon. Nature 390:159–161

    Article  Google Scholar 

  • Leroux H, Reimold WU, Koeberl C, Hornemann U, Doukhan JC (1999) Experimental shock deformation in zircon: a transmission electron microscopic study. Earth Planet Sci Lett 169:291–301

    Article  Google Scholar 

  • Li XM, Chou YT (1996) Low angle grain boundary diffusion of Cr in Nb bicrystals. Philos Mag A: Phys Condens Matter, Struct, Defects Mech Properties 73:1303–1311

    Google Scholar 

  • Lloyd GE, Freeman B (1994) Dynamic recrystallization of quartz under greenschist facies conditions. J Struct Geol 16:867–881

    Article  Google Scholar 

  • Lloyd GE, Farmer AB, Mainprice D (1997) Misoreintation analysis and the formation and orientation of subgrain and grain boundaries. Tectonophysics 279:55–78

    Article  Google Scholar 

  • Ma Q, Balluffi RW (1993) Diffusion along [001] tilt boundaries in the Au/Ag system. I. Experimental results. Acta Metall Mater 41:133–144

    Article  Google Scholar 

  • Meis C, Gale JD (1998) Computatonal study of tetravalent uranium and plutonium lattice diffusion in zircon. Mater Sci Eng B57:52–61

    Article  Google Scholar 

  • Mezger K, Krogstad EJ (1997) Interpretation of discordant U–Pb zircon ages: an evaluation. J Metamorph Geol 15:127–140

    Article  Google Scholar 

  • Mojzsis SJ, Harrison TM, Pidgeon RT (2001) Oxygen-isotope evidence from ancient zircons for liquid water at the Earth’s surface 4,300 Myr ago. Nature 409:178–181

    Article  Google Scholar 

  • Morawiec A (2003) Orientations and rotations: computations in crystallographic textures, Springer, Heidelberg, p 210

  • Morse JW, Arvidson RS (2002) The dissolution kinetics of major sedimentary carbonate minerals. Earth Sci Rev 58:51–84

    Article  Google Scholar 

  • Nye JF (1953) Some geometric relations in dislocated crystals. Acta Metall 1:153–162

    Article  Google Scholar 

  • Ozkan H, Cartz L, Jamieson JC (1974) Elastic constants of nonmetamict zirconium silicate. J Appl Phys 45:556–562

    Article  Google Scholar 

  • Pankhurst RJ, Pidgeon RT (1976) Inherited isotope systems and the source region pre-history of early Caledonian granites in the Dalradian Series of Scotland. Earth Planet Sci Lett 31:55–68

    Article  Google Scholar 

  • Pantleon W (2005) Retrieving orientation correlations in deformation structures from orientation maps. Mater Sci Technol 21:1382–1396

    Google Scholar 

  • Peck WH, Valley JW, Graham CM (2003) Slow oxygen diffusion rates in igneous zircons from metamorphic rocks. Am Mineral 88:1003–1014

    Google Scholar 

  • Pidgeon RT, Compston W (1992) A SHRIMP ion probe study of inherited and magmatic zircons from four Scottish Caledonian granites. Trans R Soc Edinburgh: Earth Sci 83:473–483

    Google Scholar 

  • Prior DJ (1999) Problems in determining the misorientation axes, for small angular misorientations, using electron backscatter diffraction in the SEM. J Microsc 195:217–225

    Article  Google Scholar 

  • Prior DJ, Trimby PW, Weber UD, Dingley DJ (1996) Orientation contrast imaging of microstructures in rocks using forescatter detectors in the scanning electron microscope. Mineral Mag 60:859–869

    Article  Google Scholar 

  • Prior DJ, Boyle AP, Brenker F, Cheadle MC, Day A, Lopez G, Peruzzo L, Potts GJ, Reddy S, Spiess R, Timms NE, Trimby P, Wheeler J, Zetterström L (1999) The application of electron backscatter diffraction and orientation contrast imaging in the SEM to textural problems in rocks. Am Mineral 84:1741–1759

    Google Scholar 

  • Prior DJ, Wheeler J, Peruzzo L, Spiess R, Storey C (2002) Some garnet microstructures: an illustration of the potential of orientation maps and misorientation analysis in microstructural studies. J Struct Geol 24:999–1011

    Article  Google Scholar 

  • Read WT (1953) Dislocations in crystals, McGraw Hill, London, p 228

  • Reddy SM, Buchan C (2005) Constraining kinematic rotation axes in high-strain zones: a potential microstructural method? In: Gapais D, Brun JP, Cobbold PR (eds) Deformation mechanisms, rheology and tectonics: from minerals to the lithosphere. Geological Society Special Publication, vol 243. pp 1–10

  • Reddy SM, Timms NE, Trimby P, Kinny PD, Buchan C, Blake K (2006) Crystal–plastic deformation of zircon: a defect in the assumption of chemical robustness. Geology 34:257–260

    Article  Google Scholar 

  • Rhyzova TV, S. AK, Korobhova VM (1966) The elastic properties of rock-forming minerals V: additional data on sillicates. Izv Earth Phys 2:63

  • Ross GM, Parrish RR, Winston D (1992) Provenance and U–Pb geochronology of the Mesoproterozoic Belt Supergroup (northwestern United States): implications for age of deposition and pre-Panthalassa plate reconstructions. Earth Planet Sci Lett 113:57–76

    Article  Google Scholar 

  • Rubatto D, Hermann J (2003) Zircon formation during fluid circulation in eclogites (Monviso, Western Alps): Implications for Zr and Hf budget in subduction zones. Geochim Cosmochim Acta 67:2173–2187

    Article  Google Scholar 

  • Rubatto D, Williams IS, Buick IS (2001) Zircon and monazite response to prograde metamorphism in the Reynolds Range, central Australia. Contrib Mineral Petrol 140:458–468

    Article  Google Scholar 

  • Ruoff AL, Balluffi RW (1963) Strain-enhanced diffusion in metals. II. Dislocation and grain-boundary short ciruiting models. J Appl Phys 34:1848–1853

    Article  Google Scholar 

  • Schaltegger U, Fanning CM, Gunther D, Maurin JC, Schulmann K, Gebauer D (1999) Growth, annealing and recrystallization of zircon and preservation of monazite in high-grade metamorphism: conventional and in-situ U–Pb isotope, cathodoluminescence and microchemical evidence. Contrib Mineral Petrol 134:186–201

    Article  Google Scholar 

  • Schwartz AJ, Kumar M, Adams BL (2000) Electron backscatter diffraction in materials science. Kluwer Academic/Plenum Publishers, New York, p 339

  • Schwartz JJ, John BE, Cheadle MJ, Miranda EA, Grimes CB, Wooden JL, Dick HJB (2005) Dating the growth of oceanic crust at a slow-spreading ridge. Science 310:654–657

    Article  Google Scholar 

  • Silver LT (1964) The relation between radioactivity and discordance in zircons. Natl Res Council Publ 1075:34–39

    Google Scholar 

  • Sirdeshmukh DB, Subhadra KG (2005) Review: consistency checks on elastic properties of crystals. J Mater Sci 40:1553–1570

    Article  Google Scholar 

  • Steyrer HP, Sturm R (2002) Stability of zircon in a low-grade ultramylonite and its utility for chemical mass balancing: the shear zone at Miéville, Switzerland. Chem Geol 187:1–19

    Article  Google Scholar 

  • Sun S, Adams BL, King WE (2000) Observations of lattice curvature near the interface of a deformed aluminum bicrystal. Philos Mag 80:9–25

    Article  Google Scholar 

  • Suzuki K, Kouta H, Nagasawa H (1992) Hf–Zr interdiffusion in single crystal zircon. Geochem J 26:99–104

    Google Scholar 

  • Valley JW (2003) Oxygen isotopes in zircon. In: Hanchar JM, Hoskin PWO (eds) Zircon. Reviews in mineralogy and geochemistry, vol 53. Mineralogical Society of America, Washington, pp 343–385

  • Watson EB, Cherniak DJ (1997) Oxygen diffusion in zircon. Earth Planet Sci Lett 148:527–544

    Article  Google Scholar 

  • Watson EB, Harrison TM (1983) Zircon saturation revisited: temperature and composition effects in a variety of crustal magma types. Earth Planet Sci Lett 64:295–304

    Article  Google Scholar 

  • Watson EB, Harrison TM (2005) Zircon thermometer reveals minimum melting conditions on earliest Earth. Science 308:841–844

    Article  Google Scholar 

  • Wayne DM, Sinha K (1988) Physical and chemical response of zircons to deformation. Contrib Mineral Petrol 98:109–121

    Article  Google Scholar 

  • Whitehouse MJ, Platt JP (2003) Dating high-grade metamorphism—constraints from rare-earth elements in zircon and garnet. Contrib Mineral Petrol 145:61–74

    Google Scholar 

  • Wilde SA, Valley JW, Peck WH, Graham CM (2001) Evidence from detrital zircons for the existence of continental crust and oceans on the Earth 4.4 Gyr ago. Nature 409:175–178

    Article  Google Scholar 

  • Winther G, Huang X, Godfrey A, Hansen N (2004) Critical comparison of dislocation boundary alignment studied by TEM and EBSD: technical issues and theoretical consequences. Acta Mater 52:4437–4446

    Article  Google Scholar 

  • Wintsch RP (1985) The possible effects of deformation on chemical processes in metamorphic fault zones. pp 251–268

  • Wintsch RP, Dunning J (1985) The effect of dislocation density on the aqueous solubility of quartz and some geologic implications: a theoretical approach. J Geophys Res 90:3649–3658

    Article  Google Scholar 

  • Yund RA, Smith BM, Tullis J (1981) Dislocation-assisted diffusion of oxygen in albite. Phys Chem Miner 7:185–189

    Article  Google Scholar 

  • Yund RA, Quigley J, Tullis J (1989) The effect of dislocations on bulk diffusion in feldspars during metamorphism. J Metamorph Geol 7:337–341

    Article  Google Scholar 

  • Yurimoto H, Morioka M, Nagakawa K (1992) Oxygen self-diffusion along high diffusivity paths in forsterite. Geochem J 26:181–188

    Google Scholar 

Download references

Acknowledgments

The Australian Research Council (via Grants R00107937, LX0453429 and DP0664078), Curtin University (via a Targeted Research Fellowship to SMR) and the Tectonics SRC are thanked for funding this research. John Terlet and Peter Self are thanked for providing access to the Adelaide EBSD system. Bob Pidgeon, Paul Evins and an anonymous reviewer are thanked for constructive reviews of the manuscript. This paper is The Institute for Geoscience Research (TIGeR) publication No. 3.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Steven M. Reddy.

Additional information

Communicated by B. Collins.

Appendices

Appendix 1: Unit quaternions

Orientations can be described by a rotation with an angle ω around an axis \({\vec{r}}\) from a reference orientation. This information can be combined into a unit quaternion

$$q = {\left({\begin{array}{*{20}c}{{q_{0}}} \\ {{\vec{q}}} \\ \end{array}} \right)} = {\left( {\begin{array}{*{20}c}{{\cos {\left({\omega /2} \right)}}} \\ {{\vec{r}\sin {\left({\omega /2} \right)}}} \\ \end{array}} \right)}$$
(A1.1)

The elements of the unit quaternion in the convention used here (Morawiec 2003) can also be found from the commonly used Euler angles \({(\varphi _{1}, \Phi, \varphi _{2})}\)

$$\begin{aligned} q_{0}&={\left| {{\hbox{cos}}{\left( {\Phi {{/2}}} \right)}} \right|}{\left| {{\hbox{ cos}}{\left({{\left({\varphi _{{{1}}} + \varphi _{2}} \right)}/2} \right)}} \right|} \\ q_{1} &= - \operatorname{sgn} {\left({{\hbox{cos}}{\left({\Phi {{/2}}} \right)}{\hbox{cos}}{\left({{\left( {\varphi _{{{1}}} + \varphi _{2}} \right)}/2} \right)}} \right)}{\hbox{sin}}{\left({\Phi {{/2}}} \right)}{\hbox{cos}}{\left({{\left( {\varphi _{{{1}}} - \varphi _{2}} \right)}/2} \right)} \\ q_{2} &= - \operatorname{sgn} {\left( {{\hbox{cos}}{\left({\Phi {{/2}}} \right)}{\hbox{cos}}{\left({{\left({\varphi _{{{1}}} + \varphi _{2}} \right)}/2} \right)}} \right)}{\hbox{sin}}{\left({\Phi {{/2}}} \right)}{\hbox{sin}}{\left({{\left({\varphi _{{{1}}} - \varphi _{2}} \right)}/2} \right)} \\ q_{3} &= - \operatorname{sgn} {\left( {{\hbox{cos}}{\left({\Phi {{/2}}} \right)}{\hbox{cos}}{\left({{\left({\varphi _{{{1}}} + \varphi _{2}} \right)}/2} \right)}} \right)}{\hbox{cos}}{\left({\Phi {{/2}}} \right)}{\hbox{sin}}{\left({{\left({\varphi _{{{1}}} + \varphi _{2}} \right)}/2} \right)} \\ \end{aligned}$$
(A1.2)

Appendix 2: Calculation of dislocation energy in zircon

The line energy of a dislocation in an anisotropic medium

$$E_{L} = \frac{{Kb^{2}}}{{4\pi}}\ln (b/R)$$
(A2.1)

is determined by its Burgers vector and an effective energy factor K which depends on the elastic constants C ij . For zircon, Burgers vectors of a-type \({(\vec{b}_{a} = [010]a)}\) are longer then Burgers vector of c-type \({(\vec{b}_{c} = [001]c)}.\) The effect of the elastic anisotropy has previously been investigated in cubic and hexagonal crystals (Foreman 1955). Under particular constraints on the elastic constants, Foreman has obtained a general result for dislocation lines along the third axis and an arbitrary Burgers vector b =  [b 1, b 2, b 3 ] (cf. Fig. 13)

$$\begin{aligned} Kb&= K_{1} b_{1} + K_{2} b_{2} + K_{3} b_{3} \\ K_{1}&= (\bar{c}_{{11}} + c_{{12}}){\sqrt {\frac{{c_{{66}} {\left( {\bar{c}_{{11}} - c_{{12}}} \right)}}}{{c_{{22}} {\left( {\bar{c}_{{11}} + c_{{12}} + 2c_{{66}}} \right)}}}}} \\ K_{2}&= {\sqrt {\frac{{c_{{22}}}}{{c_{{11}}}}}}K_{1} \\ K_{3}&= {\sqrt {c44c55}} \\ \bar{c}11&= {\sqrt {c11c22}} \\ \end{aligned}$$
(A2.2)
Fig. 13
figure 13

Sketch of the geometries involved (left) Foreman and (right) our geometry with dislocation line along [100]

For analyzing dislocations along the crystallographic [100] direction, the coordinate system must be rotated. The resulting matrix of elastic constants in the new system (1 = [010], 2 = [002], 3 = [100])

$${\hbox{c =}}{\left({\begin{array}{*{20}c} {{\hbox{C}}_{11}}& {{{\hbox{C}}_{13}}}& {C_{12}}& {0}& {0}& {0} \\ {C_{13}}& {C_{33}}& {C_{13}}& {0}& {0}& {0} \\ {C_{12}}& {C_{13}}& {C_{11}}& {0}& {0}& {0} \\ {0}& {0}& {0}& {C_{44}}& {0}& {0} \\ {0}& {0}& {0}& {0}& {C_{66}}& {0} \\ {0}& {0}& {0}& {0}& {0}& {C_{44}} \\ \end{array}} \right)}$$
(A2.3)

satisfies Foreman’s necessary condition (his equation (26)) and the energy factors can be obtained

$$\begin{aligned} K_{1}& = ({\bar{c}}_{11} + C_{13}){\sqrt {\frac{{C_{{44}} {\left( {{\bar{c}}_{11} - C_{13}} \right)}}}{{C_{{33}} {\left( {{\bar{c}}_{11} + C_{13} + 2C_{{44}}} \right)}}}}} \\ K_{2}&= {\sqrt {\frac{{C_{{33}}}}{C_{11}}}}K_{1} \\ K_{3}&= {\sqrt {C_{{44}} C_{66}}} \\ \bar{c}_{{11}}& = {\sqrt {C_{{11}} C_{33}}} \\ \end{aligned}$$
(A2.4)

These expressions allow calculation of the line energy of all dislocation with line vector [100] independent of their Burgers vector. The energy factors for the two possible edge dislocations become

$$\begin{aligned} K_{c}&= K_{2} \quad{\hbox{for}} \, b_{c} = [001]c \\ K_{a}& = K_{1} = {\sqrt {\frac{{C_{{11}}}}{{C_{{33}} }}}}K_{2} \quad{\hbox{for}} \,b_{a} = [010]a \\ K_{a}& = {\sqrt {\frac{{C_{11}}}{{C_{33}}}}}K_{c} \\ \end{aligned}$$
(A2.5)

Both the values differ only by a factor given by the ratio between the main elastic constants C11 and C33. Elastic constant data for zircon shows considerable variation (Bhimasenachar and Venkataratnam 1955; Rhyzova et al. 1966; Ozkan et al. 1974)(see Table 4), even if the discredited values of Bhimsenachar and Venkataratnam (1955) are ignored (Sirdeshmukh and Subhadra 2005). However, the conclusions for the line energy are consistent.

Table 4 Comparison of published C 11 and C 33 elastic properties for zircon

With the ratio \({{b_{a}} \mathord{\left/ {\vphantom {{b_{a}} {b_{c}}}} \right. \kern-\nulldelimiterspace} {b_{c}} = 6.61/5.98 = 1.1}\) between the lengths of the two Burgers vectors, the ratio between the line energies of the dislocations becomes

$$\frac{{E_{{_{a}}}}}{{E_{c}}} = \frac{{K_{a} b^{2}_{a} }}{{K_{c} b^{2}_{c}}} = 0.93 \times (1.10)^{2} = 1.14$$
(A2.6)

and the dislocations of [010]a type have higher line energy.

Furthermore, the energy of a boundary of given disorientation angle (formed by edge dislocations in spacing h)

$$E_{B} = \frac{{E_{L}}}{h} = - \frac{{Kb}}{{4\pi}}\theta \ln {\left(\theta \right)}$$
(A2.7)

depends only linearly on the Burgers vector. The ratio between the boundary energies

$$\frac{{E_{{_{a}}}}}{{E_{c}}} = \frac{{K_{a} b_{a} }}{{K_{c} b_{c}}} = 0.93 \times (1.10) = 1.02$$
(A2.8)

decreases the energy advantage of the [001]c dislocations, but the boundary energy of the [010]a type still remains larger. For this reason [001]c dislocations should be energetically favorable.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Reddy, S.M., Timms, N.E., Pantleon, W. et al. Quantitative characterization of plastic deformation of zircon and geological implications. Contrib Mineral Petrol 153, 625–645 (2007). https://doi.org/10.1007/s00410-006-0174-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00410-006-0174-4

Keywords

Navigation