Skip to main content
Log in

Geochemical and isotopic insights into the assembly, evolution and disruption of a magmatic plumbing system before and after a cataclysmic caldera-collapse eruption at Ischia volcano (Italy)

  • Original Paper
  • Published:
Contributions to Mineralogy and Petrology Aims and scope Submit manuscript

Abstract

New geochemical and isotopic data on volcanic rocks spanning the period ~75–50 ka BP on Ischia volcano, Italy, shed light on the evolution of the magmatic system before and after the catastrophic, caldera-forming Monte Epomeo Green Tuff (MEGT) eruption. Volcanic activity during this period was influenced by a large, composite and differentiating magmatic system, replenished several times with isotopically distinct magmas of deep provenance. Chemical and isotopic variations highlight that the pre-MEGT eruptions were fed by trachytic/phonolitic magmas from an isotopically zoned reservoir that were poorly enriched in radiogenic Sr and became progressively less radiogenic with time. Just prior to the MEGT eruption, the magmatic system was recharged by an isotopically distinct magma, relatively more enriched in radiogenic Sr with respect to the previously erupted magmas. This second magma initially fed several SubPlinian explosive eruptions and later supplied the climactic, phonolitic-to-trachytic MEGT eruption(s). Isotopic data, together with erupted volume estimations obtained for MEGT eruption(s), indicate that >5–10 km3 of this relatively enriched magma had accumulated in the Ischia plumbing system. Geochemical modelling indicates that it accumulated at shallow depths (4–6 km), over a period of ca. 20 ka. After the MEGT eruption, volcanic activity was fed by a new batch of less differentiated (trachyte-latite) magma that was slightly less enriched in radiogenic Sr. The geochemical and Sr–Nd-isotopic variations through time reflect the upward flux of isotopically distinct magma batches, variably contaminated by Hercynian crust at 8–12 km depth. The deep-sourced latitic to trachytic magmas stalled at shallow depths (4–6 km depth), differentiated to phonolite through crystal fractionation and assimilation of a feldspar-rich mush, or ascended directly to the surface and erupted.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Appleton JD (1972) Petrogenesis of potassium-rich lavas from the Roccamonfina Volcano, Roman Region, Italy. J Petrol 13:425–456

    Article  Google Scholar 

  • Arienzo I, Moretti R, Civetta L, Orsi G, Papale P (2010) The feeding system of Agnano-Monte Spina eruption (Campi Flegrei, Italy): dragging the past into present activity and future scenarios. Chem Geol 270:135–147

    Article  Google Scholar 

  • Arienzo I, Heumann A, Wörner G, Civetta L, Orsi G (2011) Processes and timescales of magma evolution prior to the Campanian Ignimbrite eruption (Campi Flegrei, Italy). Earth Planet Sci Lett 306:217–228

    Article  Google Scholar 

  • Asimow PD, Ghiorso MS (1998) Algorithmic modifications extending MELTS to calculate subsolidus phase relations. Am Miner 83:1127–1132

    Google Scholar 

  • Auger E, Gasparini P, Virieux J, Zollo A (2001) Seismic evidence of an extended magmatic sill under Mt. Vesuvius. Science 294:1510–1512. doi:10.1126/science.1064893

    Article  Google Scholar 

  • Bachmann O, Bergantz GW (2008) The magma reservoirs that feed super-eruptions. Elements 4:17–21

    Article  Google Scholar 

  • Bacon CR, Druitt TH (1988) Compositional evolution of the zoned calcalkaline magma chamber of mount-mazama, Crater Lake, Oregon. Contrib Miner Petrol 98:224–256. doi:10.1007/bf00402114

    Article  Google Scholar 

  • Blake S, Ivey GN (1986a) Density and viscosity gradients in zoned magma chambers, and their influence on withdrawal dynamics. J Volcanol Geotherm Res 30:201–230

    Article  Google Scholar 

  • Blake S, Ivey GN (1986b) Magma-mixing and the dynamics of withdrawal from stratified reservoirs. J Volcanol Geotherm Res 27:153–178

    Article  Google Scholar 

  • Brown SJA, Wilson CJN, Cole JW, Wooden J (1998) The Whakamaru group ignimbrites, Taupo Volcanic Zone, New Zealand: evidence for reverse tapping of a zoned silicic magmatic system. J Volcanol Geotherm Res 84:1–37

    Article  Google Scholar 

  • Brown RJ, Orsi G, de Vita S (2008) New insights into Late Pleistocene explosive volcanic activity and caldera formation on Ischia (southern Italy). Bull Volcanol 70:583–603

    Article  Google Scholar 

  • Bruno P, de Alteriis G, Florio G (2002) The western undersea section of the Ischia volcanic complex (Italy, Tyrrhenian Sea) inferred by marine geophysical data. Geophys Res Lett 23:2689–2692

    Google Scholar 

  • Buchner G, Italiano A, Vita-Finzi C (1996) Recent uplift of Ischia, Southern Italy. In: McGuire WJ, Jones AP, Neuberg J (eds) Volcano instability on the Earth and other planets. Geol Soc London Spec Pub 110:249–252

  • Burgisser A, Bergantz GW (2011) A rapid mechanism to remobilize and homogenize highly crystalline magma bodies. Nature 471:212–215. doi:10.1038/nature09799

    Article  Google Scholar 

  • Caliro S, Panichi C, Stanzione D (1999) Variation in the TDC isotope composition of thermal waters of the island of Ischia (Italy) and its implications for volcanic surveillance. J Volcanol Geotherm Res 90:219–240

    Article  Google Scholar 

  • Cannatelli C, Lima A, Bodnar RJ, De Vivo B, Webster JD, Fedele L (2007) Geochemistry of melt inclusions from the Fondo Riccio and Minopoli 1 eruptions at Campi Flegrei (Italy). Chem Geol 237:418–432. doi:10.1016/j.chemgeo.2006.07.012

    Article  Google Scholar 

  • Cashman KV, Sparks RSJ (2013) How volcanoes work: a 25 year perspective. Geol Soc Am Bull 125:664–690. doi:10.1130/B30720.1

    Article  Google Scholar 

  • Charlier BLA, Wilson CJN (2010) Chronology and evolution of caldera-forming and post-caldera magma systems at Okataina Volcano, New Zealand from Zircon U–Th model-age spectra. J Petrol 51:1121–1141. doi:10.1093/petrology/egq015

    Article  Google Scholar 

  • Charlier BLA, Wilson CJN, Davidson JP (2008) Rapid open-system assembly of a large silicic magma body: time-resolved evidence from cored plagioclase crystals in the Oruanui eruption deposits, New Zealand. Contrib Miner Petrol 156:799–813. doi:10.1007/s00410-008-0316-y

    Article  Google Scholar 

  • Cioni R, Marianelli P, Santacroce R (1998) Thermal and compositional evolution of the shallow magma chambers of Vesuvius: evidence from pyroxene phenocrysts and melt inclusions. J Geophys Res 103. doi:10.1029/98JB01124.issn:0148-0227

  • Civetta L, Gallo G, Orsi G (1991) Sr- and Nd-isotope and trace element constraints on the chemical evolution of Ischia (Italy) in the last 55 ka. J Volcanol Geotherm Res 46:213–230

    Article  Google Scholar 

  • Crisci GM, de Francesco AM, Mazzuoli R, Poli G, Stanzione D (1989) Geochemistry of the recent volcanics of Ischia Island, Italy: evidences of crystallization and magma mixing. Chem Geol 78:15–33

    Article  Google Scholar 

  • Czamanske GK, Wones DR (1973) Oxidation during magmatic differentiation, Finnmarka Complex, Oslo area, Norway: part 2: the mafic silicates. J Petrol 14:349–380

    Article  Google Scholar 

  • D’Antonio M (2011) Lithology of the basement underlying the Campi Flegrei caldera: volcanological and petrological constraints. J Volcanol Geotherm Res 200:91–98. doi:10.1016/j.jvolgeores.2010.12.006

    Article  Google Scholar 

  • D’Antonio M, Tonarini S, Arienzo I, Civetta L, Di Renzo V (2007) Components and processes in the magma genesis of the Phlegrean Volcanic District, southern Italy. In: Beccaluva L, Bianchini G, Wilson M (eds) Cenozoic volcanism in the Mediterranean Area. Geol Soc Am Spec Pap 418:203–220. doi:10.1130/2007.2418(10)

  • D’Antonio M, Tonarini S, Arienzo I, Civetta L, Dallai L, Moretti R, Orsi G, Andria M, Trecalli A (2013) Mantle and crustal processes in the magmatism of the Campania region: inferences from mineralogy, geochemistry, and Sr–Nd–O isotopes of young hybrid volcanics of the Ischia island (South Italy). Contrib Miner Petrol 165:1173–1194. doi:10.1007/s00410-013-0853-x

    Article  Google Scholar 

  • de Vita S, Sansivero F, Orsi G, Marotta E (2006) Cyclical slope instability and volcanism related to volcano-tectonism in resurgent calderas: the Ischia island (Italy) case study. Eng Geol 86:148–165. doi:10.1016/j.enggeo.2006.02.013

    Article  Google Scholar 

  • de Vita S, Sansivero F, Orsi G, Marotta E, Piochi M (2010) Volcanological and structural evolution of the Ischia resurgent caldera (Italy) over the past 10 ka. In: Groppelli G, Viereck-Goette L (eds) Stratigraphy and geology of volcanic areas. Geol Soc Am Spec Pap 464:193–241. doi:10.1130/2010.2464(10)

  • Della Seta M, Marotta E, Orsi G, de Vita S, Sansivero F, Fredi P (2012) Slope instability induced by volcano-tectonism as an additional source of hazard in active volcanic areas: the case of Ischia island (Italy). Bull Volcanol 74:79–106. doi:10.1007/s00445-011-0501-0

    Article  Google Scholar 

  • Di Girolamo P, Ghiara MR, Rolandi G, Stanzione D (1979) Caratteri geochimici delle vulcaniti quaternarie della Campania (calc-alcaline, shoshonitiche, leucitiche): osservazioni geotettoniche e genetiche. Rend SIMP 35:361–375

    Google Scholar 

  • Di Girolamo P, Melluso L, Morra V, Secchi FAG (1995) Evidence of interaction between mafic and differentiated magmas in the youngest phase of activity at Ischia Island (Italy). Per Miner 64:393–411

    Google Scholar 

  • Di Napoli R, Aiuppa A, Bellomo S, Brusca L, D’Alessandro W, Gagliano Candela E, Longo M, Pecoraino G, Valenza M (2009) A model for Ischia hydrothermal system: evidences from the chemistry of thermal groundwaters. J Volcanol Geotherm Res 186:133–159. doi:10.1016/j.jvolgeores.2009.06.005

    Article  Google Scholar 

  • Di Napoli R, Martorana R, Orsi G, Aiuppa A, Camarda M, De Gregorio S, Gagliano Candela E, Luzio D, Messina N, Pecoraino G, Bitetto M, de Vita S, Valenza M (2011) Highlights on the structure of hydrothermal systems from an integrated geochemical, geophysical and geological approach: the Ischia Island case study. Geochem Geophys Geosyst 12:Q07017. doi:10.1029/2010GC003476

    Article  Google Scholar 

  • Di Napoli R, Federico C, Aiuppa A, D’Antonio M, Valenza M (2013) Quantitative models of hydrothermal fluid-mineral reaction: the Ischia case. Geochim Cosmochim Acta 105:108–129. doi:10.1016/j.gca.2012.11.039

    Article  Google Scholar 

  • Di Renzo V, Arienzo I, Civetta L, D’Antonio M, Tonarini S, Di Vito MA, Orsi G (2011) The magmatic feeding system of the Campi Flegrei caldera: architecture and temporal evolution. Chem Geol 281:227–241

    Article  Google Scholar 

  • Druitt TH, Costa F, Deloule E, Dungan M, Scaillet B (2012) Decadal to monthly timescales of magma transfer and reservoir growth at a caldera volcano. Nature 482:77–80. doi:10.1038/nature10706

    Article  Google Scholar 

  • Fabbrizio A, Scaillet B, Carroll MR (2009) Estimation of pre-eruptive magmatic water fugacity in the Phlegrean Fields, Naples, Italy. Eur J Miner 21:107–116

    Article  Google Scholar 

  • Foden J (1986) The petrology of Tambora volcano, Indonesia—a model for the 1815 eruption. J Volcanol Geotherm Res 27:1–41. doi:10.1016/0377-0273(86)90079-X

    Article  Google Scholar 

  • Forcella F, Gnaccolini M, Vezzoli L (1982) I depositi piroclastici del settore sud-orientale dell’isola d’Ischia (Italia). Riv It Paleont Strat 89:135–170

    Google Scholar 

  • Ghiara MR, Lirer L, Munno R (1979) Mineralogy and geochemistry of the “low-potassium series” of the Campania volcanics (South Italy). Chem Geol 26:29–49

    Article  Google Scholar 

  • Ghiorso MS, Sack RO (1995) Chemical mass-transfer in magmatic processes. A revised and internally consistent thermodynamic model for the interpolation of liquid–solid equilibria in magmatic systems at elevated temperatures and pressures. Contrib Miner Petrol 119:197–212

    Article  Google Scholar 

  • Gillot PY, Chiesa S, Pasquaré G, Vezzoli L (1982) <33 000 yr K/Ar dating of the volcano-tectonic horst of the isle of Ischia, Gulf of Naples. Nature 229:242

    Article  Google Scholar 

  • Ginibre C, Wörner G (2007) Variable parent magmas and recharge regimes of the Parinacota magma system (N. Chile) revealed by Fe, Mg and Sr zoning in plagioclase. Lithos 98:118–140

    Article  Google Scholar 

  • Goff F, Warren RG, Goff CJ, Dunbar N (2014) Eruption of reverse-zoned upper Tshirege Member, Banderlier Tuff from centralized vents within Valles Caldera, New Mexico. J Volcanol Geotherm Res 276:82–104

    Article  Google Scholar 

  • Goldstein SL, Deines P, Oelkers EH, Rudnick RL, Walter LM (2003) Standards for publications of isotope ratio and chemical data in chemical geology. Chem Geol 202:1–4

    Article  Google Scholar 

  • Gunow AJ, Ludington S, Munoz JL (1980) Fluorine in micas from the Henderson molybdenite deposit, Colorado. Econ Geol 75:1127–1137

    Article  Google Scholar 

  • Inguaggiato S, Pecoraino G, D’Amore F (2000) Chemical and isotopical characterization of fluid manifestations of Ischia Island (Italy). J Volcanol Geotherm Res 99:151–178

    Article  Google Scholar 

  • Le Maitre RW, Bateman P, Dudek A, Keller J, Lameyr J, Le Bas MJ, Sabine PJ, Schmid R, Sørensen H, Streckeisen A, Woolley AR, Zanettin B (eds) (1989) A classification of igneous rocks and glossary of terms: recommendations of the International Union of Geological Sciences, Subcommission on the Systematics of Igneous Rocks. Blackwell Scientific, Oxford, pp 193

  • Mangiacapra A, Moretti R, Rutherford M, Civetta L, Orsi G, Papale P (2008) The deep magmatic system of the Campi Flegrei caldera (Italy). Geophys Res Lett 35. doi:10.1029/2008GL035550

  • Moretti R, Arienzo I, Orsi G, Civetta L, D’Antonio M (2013) The deep plumbing system of Ischia: a physico-chemical window on the fluid-saturated and CO2-sustained Neapolitan volcanism (southern Italy). J Petrol 54:951–984. doi:10.1093/petrology/egt002

    Article  Google Scholar 

  • Munoz JL (1984) F–OH and Cl–OH exchange in micas with applications to hydrothermal ore deposits. Miner Soc Am Rev Min 13:469–494

    Google Scholar 

  • Orsi G, Gallo G, Zanchi A (1991) Simple-shearing block resurgence in caldera depressions. A model from Pantelleria and Ischia. J Volcanol Geotherm Res 47:1–11

    Article  Google Scholar 

  • Orsi G, Piochi M, Campajola L, D’Onofrio A, Gialanella L, Terrasi F (1996) 14C geochronological constraints for the volcanic history of the island of Ischia (Italy) over the last 5000 years. J Volcanol Geotherm Res 71:249–257

    Article  Google Scholar 

  • Orsi G, Patella D, Piochi M, Tramacere A (1999) Magnetic modelling of the Phlegraean Volcanic District with extension to the Ponza archipelago, Italy. J Volcanol Geotherm Res 91:345–360

    Article  Google Scholar 

  • Pabst S, Wörner G, Civetta L, Tesoro R (2008) Magma chamber evolution prior to the Campanian Ignimbrite and Neapolitan Yellow Tuff eruptions (Campi Flegrei, Italy). Bull Volcanol 70:961–976. doi:10.1007/s00445-007-0180-z

    Article  Google Scholar 

  • Paoletti V, Di Maio R, Cella F, Florio G, Mocka K, Roberti N, Secomandi M, Supper R, Fedi M, Rapolla A (2009) The Ischia volcanic island (southern Italy): inferences from potential field data interpretation. J Volcanol Geotherm Res 179:69–86

    Article  Google Scholar 

  • Paoletti V, D’Antonio M, Rapolla A (2013) The structural setting of the Ischia Island (Phlegrean Volcanic District, Southern Italy): inferences from geophysics and geochemistry. J Volcanol Geotherm Res 249:155–173

    Article  Google Scholar 

  • Papale P, Moretti R, Barbato D (2006) The compositional dependence of the saturation surface of H2O + CO2 fluids in silicate melts. Chem Geol 229:78–95

    Article  Google Scholar 

  • Piochi M, Civetta L, Orsi G (1999) Mingling in the magmatic system of Ischia (Italy) in the past 5 ka. Miner Petrol 66:227–258

    Article  Google Scholar 

  • Poli S, Chiesa S, Gillot P-Y, Gregnanin A, Guichard F (1987) Chemistry versus time in the volcanic complex of Ischia (Gulf of Naples, Italy): evidence of successive magmatic cycles. Contrib Miner Petrol 95:322–335

    Article  Google Scholar 

  • Poli S, Chiesa S, Gillot P-Y, Guichard F, Vezzoli L (1989) Time dimension in the geochemical approach and hazard estimates of a volcanic area: the isle of Ischia. J Volcanol Geotherm Res 36:327–335

    Article  Google Scholar 

  • Rapolla A, Paoletti V, Secomandi M (2010) Seismically-induced landslide susceptibility evaluation: application of a new procedure to the island of Ischia, Campania Region, Southern Italy. Eng Geol 114:10–25

    Article  Google Scholar 

  • Righter K, Carmichael ISE (1996) Phase equilibria of phlogopite lamprophyres from western Mexico: biotite-liquid equilibria and P–T estimates for biotite-bearing igneous rocks. Contrib Miner Petrol 123:1–21

    Article  Google Scholar 

  • Rittmann A, Gottini V (1981) L’isola d’Ischia - Geologia. Boll Serv Geol Italia 101:131–274

    Google Scholar 

  • Rosi M, Sbrana A, Vezzoli L (1988) Correlazioni tefrostratigrafiche di alcuni livelli di Ischia, Procida e Campi Flegrei. Mem Soc Geol It 41:1015–1027

    Google Scholar 

  • Rottura A, Del Moro A, Pinarelli L, Petrini R, Peccerillo A, Caggianelli A, Bargossi GM, Piccarreta G (1991) Relationships between intermediate and acidic rocks in orogenic granitoid suites: petrological, geochemical and isotopic (Sr, Nd, Pb) data from Capo Vaticano (southern Calabria, Italy). Chem Geol 92:153–176

    Article  Google Scholar 

  • Sbrana A, Fulignati P, Marianelli P, Boyce AJ, Cecchetti A (2009) Exhumation of an active magmatic–hydrothermal system in a resurgent caldera environment: the example of Ischia (Italy). J Geol Soc Lond 166:1061–1073

    Article  Google Scholar 

  • Smith PM, Asimow PD (2005) Adiabat_1ph: a new public front-end to the MELTS, pMELTS, and pHMELTS models Author(s): Smith, PM; Asimow, PD. Geochem Geophys Geosyst 6:Q02004. doi:10.1029/2004GC000816

    Article  Google Scholar 

  • Smith RL, Bailey RA (1966) The Bandelier Tuff: a study of ash-flow eruption cycles from zoned magma chambers. Bull Volcanol 29:83–103

    Article  Google Scholar 

  • Spera FJ, Bohrson WA (2001) Energy-constrained open-system magmatic processes I: general model and energy-constrained assimilation and fractional crystallization (EC-AFC) formulation. J Petrol 42:999–1018

    Article  Google Scholar 

  • Spera FJ, Crisp JA (1981) Eruption volume, periodicity, and caldera area: relationships and inferences on development of compositional zonation: I silicic chambers. J Volcanol Geotherm Res 11:169–187

    Article  Google Scholar 

  • Stormer JC, Nicholls JA (1978) XLFRAC: a program for interactive testing of magmatic differentiation models. Comp Geosci 4:143–159

    Article  Google Scholar 

  • Takahashi R, Nakagawa M (2013) Formation of a compositionally reverse zoned magma chamber: petrology of the AD1694 eruptions of Hokkaido-Komagatake volcano, Japan. J Petrol 54:815–838

    Article  Google Scholar 

  • Tibaldi A, Vezzoli L (1998) The space problem of caldera resurgence: an example from Ischia Island, Italy. Geol Runds 87:53–66

    Article  Google Scholar 

  • Tibaldi A, Vezzoli L (2004) A new type of volcano flank failure: the resurgent caldera sector collapse, Ischia, Italy. Geophys Res Lett 31:L14605. doi:10.1029/2004GL020419

    Article  Google Scholar 

  • Tomlinson EL, Albert PG, Wulf S, Brown RJ, Smith VC, Keller J, Orsi G, Bourne AJ, Menzies MA. Age and geochemistry of tephra layers from Ischia, 1 Italy: constraints from proximal distal correlations with Lago Grande di Monticchio. J Volcanol Geotherm Res (accepted)

  • Tonarini S, Leeman WP, Civetta L, D’Antonio M, Ferrara G, Necco A (2004) B/Nb and δ11B systematics in the Phlegrean Volcanic District (PVD). J Volcanol Geotherm Res 133:123–139

    Article  Google Scholar 

  • Vezzoli L (ed) (1988) Island of Ischia. Quaderni de La Ricerca Scientifica, CNR, Rome 114, pp 133

  • Waldbaum DR, Thompson JB (1969) Mixing properties of sanidine crystalline solutions IV: phase diagrams from equations of state. Am Miner 54:1274–1298

    Google Scholar 

  • Wiesmaier S, Deegan FM, Troll VR, Carrecedo JC, Chadwick JP, Chew DM (2012) Magma mixing in the 1100 AD Montaña Reventada composite lava flow, Tenerife, Canary Islands: interaction between rift zone and central volcano plumbing systems. Contrib Miner Petrol 162:651–669

    Article  Google Scholar 

  • Wones DR, Eugster HP (1965) Stability of biotite: experiment, theory and application. Am Miner 50:1228–1272

    Google Scholar 

  • Woodland AB, Wood BJ (1994) Fe3O4 activities in Fe–Ti spinel solid solutions. Eur J Miner 6:23–37

    Article  Google Scholar 

  • Wyllie PJ (1977) Crustal anatexis: an experimental review. Tectonophysics 43:41–71

  • Zollo A, Maercklin N, Vassallo M, Dello Iacono D, Virieux J, Gasparini P (2008) Seismic reflections reveal a massive melt layer feeding Campi Flegrei caldera. Geophys Res Lett 35:L12306. doi:10.1029/2008GL034242

    Article  Google Scholar 

Download references

Acknowledgments

RJB acknowledges a fellowship from the EU Volcano Dynamics Research Training Network (5th Framework Program). The authors thank A. Carandente and P. Belviso for the support in the laboratory. E. Marotta, S. de Vita and F. Sansivero are thanked for help in the field and discussions. This research was partly carried out under the framework of the Italian INGV-DPC 2004–2006 program, sub-project V3-3 Ischia, and PRIN 2008 project. ET, PA and MM were supported by the NERC RESET Consortium (NE/E015905/1). We thank Jon Blundy for editorial stewardship, and Joan Martí and an anonymous reviewer for thoughtful comments on the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. J. Brown.

Additional information

Communicated by Jon Blundy.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (XLSX 174 kb)

Appendix

Appendix

Fluid-mineral equilibria

Following Fabbrizio et al. (2009), activity values for sanidine were taken by graphically reading the activity-composition plot in Waldbaum and Thompson (1969), those for magnetite by using the activity-composition expression of Woodland and Wood (1994) along the join magnetite-ulvospinel, and those for annite by the ionic model of Czamanske and Wones (1973). Calculations at 930 °C return fH2O values of 668 bars and 498 bars for the least (NNO + 0.75) and most oxidized (NNO + 1.44) trachyte (or trachy/phonolites), respectively. Furthermore, we computed the fHF and fHCl by using the expressions for chemical exchanges between fluoroannite/phlogopite–annite/fluorophlogopite and chloroannite/phlogopite–annite/chlorophlogopite pairs from Munoz (1984), based on the compositional deconvolution of Gunow et al. (1980) for the siderophyllite and annite components in biotites. We obtained fHF = 0.4 bars and fHCl = 335 bars at NNO + 0.75, and fHF < 0.1 bars and fHCl = 18 bars at NNO + 1.44.

MELTS calculations

For the parental latite ascending from depth larger than 6 km, we lack a direct temperature estimate as well as information on volatile contents. By analogy with younger than 3 ka Ischia latites (Moretti et al. 2013), temperatures around 1,200 °C and maximum water contents of 3–3.5 wt% can be suggested for the Chiummano latite. Of note is that the application of the CaO-in-glass thermometer of Cioni et al. (1998) returns a temperature of 1,060 °C.

MELTS calculations were thus initialized with a starting composition represented by the Chiummano latite (Supplementary table, Table 3) having 2.5 wt% of water, fO2 conditions of QFM + 1 (i.e. NNO + ~0.6), the latter more reduced than biotites in poorly evolved trachytes, and initial P and T at 200 MPa and 1,200 °C, respectively. The crystallizing solid phases are those consistent with petrographic description (see also Table 3). A ∇P/∇T gradient of 2.6 bar/°C was applied in such a way that 930 °C were reached at 130 MPa (5.5 km). In this P–T conditions, the poorly evolved trachyte magma forms. After crystallization of clinopyroxene, Ti-magnetite, plagioclase, minor olivine and biotite, the residual liquid (72 %) attains a composition close to MEGT 0308 trachyte sample (step 1 in Table 3). Interestingly, biotite starts crystallizing between 940 and 930 °C for the selected water content. An initial water content larger than 2.5 wt% would prevent crystallization of biotite.

The following step requires assimilation of felsic rocks to approach the composition of the MEGT 0312 sample; otherwise, fractional crystallization would only drive the system towards more silica-undersaturated compositions. The assimilant was composed by two feldspars (Na-sanidine and K-sanidine), whereas the assimilating magma was represented by the trachyte, derived by fractional crystallization from the parental latite at 930 °C. Table 3 in text reports the MELTS outcomes for the assimilation process, in which feldspars, initially at 600 °C, are isobarically and isothermally assimilated by the trachyte at 930 °C. Incremental assimilation of P2O5- and TiO2-free feldspars gives results that are in line with the Schiappone trachy-phonolitic MEGT 0312 composition (step 2 in Table 3; Fig. 8), allowing a slight decrease of P2O5 and TiO2 content (this latter favoured by concomitant precipitation of Ti-magnetite).

Alternatively, feldspar assimilation can involve directly the latite (1,200 °C), ascending between 130 and 100 MPa and infiltrating feldspar cumulitic residuals. If this is the case, during feldspar digestion, water is lost and dissolved H2O falls down to 1 wt% in the final melt. In the absence of a detailed melt inclusion study, we will retain here the first scenario, involving feldspar assimilation from trachyte at 930 °C. It is also worth noting that during assimilation, fractionated solids, which amount are nearly equal in mass to that of assimilated feldspars, are dominated by feldspar Or60–67. This implies that, after each assimilation event, feldspar cumulates are potentially left in place for future remobilization.

After feldspar assimilation, fractional crystallization drives again the residual liquid towards undersaturation, with SiO2 reaching 55–56 wt% and Al2O3 dropping inevitably, accompanied by a significant decrease of FeOtot and TiO2. Only a depressurization taking place right after assimilation allows to keep high silica and alumina contents, nearly constant FeOtot and to increase TiO2, consistent with observations (step 3 in Table 3).

After assimilation and during this final stage of isothermal decompression, biotite, two feldspars, spinel and apatite crystallize. This association is observed only by keeping QFM + 2. Lower oxygen fugacities promote olivine, whereas higher values do not allow Na2O to overcome K2O. Nepheline crystallizes at the very end (T = 910 °C and P = 100 bar; see MELTS step 4 in Table 3), when the residual liquid amounts to 3.5 wt%. However, liquid composition at that stage would be even more evolved than that in step 3 (Table 3).

Finally, we remark that MELTS cannot be used to investigate accessory phases such as sphene, apatite and Na-amphiboles, at least for the studied compositions, for which the role of fluids other than water (S-species, halogens) may have dramatic effects on the mixing properties of such solid solutions.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Brown, R.J., Civetta, L., Arienzo, I. et al. Geochemical and isotopic insights into the assembly, evolution and disruption of a magmatic plumbing system before and after a cataclysmic caldera-collapse eruption at Ischia volcano (Italy). Contrib Mineral Petrol 168, 1035 (2014). https://doi.org/10.1007/s00410-014-1035-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00410-014-1035-1

Keywords

Navigation