Skip to main content

Advertisement

Log in

Phlogopite- and clinopyroxene-dominated fractional crystallization of an alkaline primitive melt: petrology and mineral chemistry of the Dariv Igneous Complex, Western Mongolia

  • Original Paper
  • Published:
Contributions to Mineralogy and Petrology Aims and scope Submit manuscript

Abstract

We present field relationships, petrography, and mineral major and trace element data for the Neoproterozoic Dariv Igneous Complex of the Altaids of Western Mongolia. This unique complex of high-K plutonic rocks is composed of well-exposed, km-scale igneous intrusions of wehrlites, phlogopite wehrlites, apatite-bearing phlogopite clinopyroxenites, monzogabbros, monzodiorites, and clinopyroxene-bearing monzonites, all of which are intruded by late stage lamprophyric and aplitic dikes. The biotite-dominated igneous complex intrudes depleted harzburgitic serpentinite. The observed lithological variability and petrographic observations suggest that the plutonic rocks can be ascribed to a fractionation sequence defined by olivine + clinopyroxene ± Fe–Ti oxides → phlogopite + apatite → K-feldspar + plagioclase → amphibole + quartz. Notably, phlogopite is the dominant hydrous mafic mineral. Petrogenesis of the observed lithologies through a common fractionation sequence is supported by a gradual decrease in the Mg# [molar Mg/(Fetotal + Mg) × 100] of mafic minerals. Crystallization conditions are derived from experimental phase petrology and mineral chemistry. The most primitive ultramafic cumulates crystallized at ≤0.5 GPa and 1,210–1,100 °C and oxygen fugacity (fO2) of +2–3 ∆FMQ (log units above the fayalite–quartz–magnetite buffer). Trace element modeling using clinopyroxene and apatite rare earth element compositions indicates that the dominant mechanism of differentiation was fractional crystallization. The trace element composition of a parental melt was calculated from primitive clinopyroxene compositions and compares favorably with the compositions of syn-magmatic lamprophyres that crosscut the fractionation sequence. The parental melt composition is highly enriched in Th, U, large ion lithophile elements, and light rare earth elements and has a pronounced negative Nb–Ta depletion, suggestive of an alkaline primitive melt originating from a subduction-imprinted mantle. Comparison with a global compilation of primitive arc melts demonstrates that Dariv primitive melts are similar in composition to high-K primitive melts found in some continental arcs. Thus, the high-K fractionation sequence exposed in the Dariv Igneous Complex may be a previously unrecognized important fractionation sequence resulting in alkali-rich upper crustal granitoids in continental arc settings.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  • Allan J, Carmichael I (1984) Lamprophyric lavas in the Colima graben, SW Mexico. Contrib Miner Petrol 88(3):203–216

    Article  Google Scholar 

  • Alonso-Perez R, Müntener O, Ulmer P (2009) Igneous garnet and amphibole fractionation in the roots of island arcs: experimental constraints on H2O undersaturated andesitic liquids. Contrib Miner Petrol 157:541–558

    Article  Google Scholar 

  • Aoki K, Kushiro I (1968) Some clinopyroxenes from ultramafic inclusions in Dreiser Weiher, Eifel. Contrib Mineral Petrol 18(4):326–337

    Article  Google Scholar 

  • Armstrong JT (1995) Citzaf-a package of correction programs for the quantitative electron microbeam X-ray-analysis of thick polished materials, thin-films, and particles. Microbeam Anal 4(3):177–200

    Google Scholar 

  • Badarch G, Dickson Cunningham W, Windley BF (2002) A new terrane subdivision for Mongolia: implications for the Phanerozoic crustal growth of Central Asia. J Asian Earth Sci 21(1):87–110

    Article  Google Scholar 

  • Ballhaus C, Berry R, Green D (1991) High pressure experimental calibration of the olivine-orthopyroxene-spinel oxygen geobarometer: implications for the oxidation state of the upper mantle. Contrib Miner Petrol 107(1):27–40

    Article  Google Scholar 

  • Barton M, Hamilton D (1978) Water-saturated melting relations to 5 kilobars of three Leucite Hills lavas. Contrib Miner Petrol 66(1):41–49

    Article  Google Scholar 

  • Barton M, Hamilton DL (1979) The melting relationships of a madupite from the Leucite Hills, Wyoming, to 30 Kb. Contrib Miner Petrol 69(2):133–142

    Article  Google Scholar 

  • Beccaluva L, Coltorti M, Di Girolamo P, Melluso L, Milani L, Morra V, Siena F (2002) Petrogenesis and evolution of Mt. Vulture alkaline volcanism (Southern Italy). Mineral Petrol 74(2):277–297

    Article  Google Scholar 

  • Buhlmann AL, Cavell P, Burwash RA, Creaser RA, Luth RW (2000) Minette bodies and cognate mica-clinopyroxenite xenoliths from the Milk River area, southern Alberta: records of a complex history of the northernmost part of the Archean Wyoming craton. Can J Earth Sci 37(11):1629–1650

    Article  Google Scholar 

  • Buslov MM, Saphonova IY, Watanabe T, Obut OT, Fujiwara Y, Iwata K, Semakov NN, Sugai Y, Smirnova LV, Kazansky AY (2001) Evolution of the Paleo-Asian Ocean (Altai–Sayan Region, Central Asia) and collisions of possible Gondwana-derived terranes with the southern marginal part of the Siberian continent. Geosci J 5(3):203–224

    Article  Google Scholar 

  • Canil D (2002) Vanadium in peridotites, mantle redox and tectonic environments: Archean to present. Earth Planet Sci Lett 195(1):75–90

    Google Scholar 

  • Canil D, Fedortchouk Y (2000) Clinopyroxene-liquid partitioning for vanadium and the oxygen fugacity during formation of cratonic and oceanic mantle lithosphere. J Geophys Res 105:26

    Google Scholar 

  • Carlier G, Lorand J-P, Audebaud E, Kienast J-R (1997) Petrology of an unusual orthopyroxene-bearing minette suite from southeastern Peru, Eastern Andean Cordillera: Al-rich lamproites contaminated by peraluminous granites. J Volcanol Geoth Res 75(1–2):59–87

    Article  Google Scholar 

  • Carmichael IS (1991) The redox states of basic and silicic magmas: a reflection of their source regions? Contrib Miner Petrol 106(2):129–141

    Article  Google Scholar 

  • Carmichael I, Lange R, Luhr JF (1996) Quaternary minettes and associated volcanic rocks of Mascota, western Mexico: a consequence of plate extension above a subduction modified mantle wedge. Contrib Mineral Petrol 124(3):302–333

    Article  Google Scholar 

  • Cherniak D (2000) Rare earth element diffusion in apatite. Geochim Cosmochim Acta 64(22):3871–3885

    Article  Google Scholar 

  • Cid JP, Nardi LVS, Stabel LZ, Conceicao RV, Balzaretti NM (2003) High-pressure minerals in mafic microgranular enclaves: evidences for co-mingling between lamprophyric and syenitic magmas at mantle conditions. Contrib Mineral Petrol 145(4):444–459

    Article  Google Scholar 

  • Conference Participants (1972) Penrose field conference on ophiolites. Geotimes 17:24–25

    Google Scholar 

  • Conticelli S, Peccerillo A (1992) Petrology and geochemistry of potassic and ultrapotassic volcanism in central Italy: petrogenesis and inferences on the evolution of the mantle sources. Lithos 28(3,Äì6):221–240

    Article  Google Scholar 

  • Dawson JB, Smith JV (1992) Olivine-mica pyroxenite xenoliths from northern Tanzania: metasomatic products of upper-mantle peridotite. J Volcanol Geoth Res 50:131–142

    Article  Google Scholar 

  • DeBari S, Kay SM, Kay RW (1987) Ultramafic xenoliths from Adagdak Volcano, Adak, Aleutian Islands, Alaska; deformed igneous cumulates from the Moho of an island arc. J Geol 95(3):329–341

    Article  Google Scholar 

  • Dijkstra AH, Brouwer FM, Cunningham WD, Buchan C, Badarch G, Mason PRD (2006) Late Neoproterozoic proto-arc ocean crust in the Dariv Range, Western Mongolia: a supra-subduction zone end-member ophiolite. J Geol Soc Lond 163:363–373

    Article  Google Scholar 

  • Downes H, MacDonald R, Upton BGJ, Cox KG, Bodinier J-L, Mason PRD, James D, Hill PG, Hearn BC (2004) Ultramafic xenoliths from the Bearpaw Mountains, Montana, USA: evidence for Multiple Metasomatic Events in the Lithospheric Mantle beneath the Wyoming Craton. J Petrol 45(8):1631–1662

    Article  Google Scholar 

  • Ducea M, Saleeby J (1998) A case for delamination of the deep batholithic crust beneath the Sierra Nevada, California. Int Geol Rev 40(1):78–93

    Article  Google Scholar 

  • Edgar AD, Condliffe E (1978) Derivation of K-rich ultramafic magmas from a peridotitic mantle source. Nature 275(5681):639–640

    Article  Google Scholar 

  • Edgar AD, Condliffe E, Barnett RL, Shirran RJ (1980) An experimental study of an olivine ugandite magma and mechanisms for the formation of its K-enriched derivatives. J Petrol 21(3):475–497

    Article  Google Scholar 

  • Edgar AD, Green DH, Hibberson WO (1976) Experimental petrology of a highly potassic magma. J Petrol 17:339–356

    Article  Google Scholar 

  • Elkins-Tanton LT, Grove TL (2003) Evidence for deep melting of hydrous metasomatized mantle: pliocene high-potassium magmas from the Sierra Nevadas. J Geophys Res 108(B7):2350

    Google Scholar 

  • Ertan IE, Leeman WP (1996) Metasomatism of Cascades subarc mantle: evidence from a rare phlogopite orthopyroxenite xenolith. Geology 24(5):451–454

    Article  Google Scholar 

  • Esperança S, Holloway JR (1987) On the origin of some mica-lamprophyres: experimental evidence from a mafic minette. Contrib Miner Petrol 95(2):207–216

    Article  Google Scholar 

  • Farmer GL, Glazner AF, Manley CR (2002) Did lithospheric delamination trigger late Cenozoic potassic volcanism in the southern Sierra Nevada, California? Geol Soc Am Bull 114(6):754–768

    Article  Google Scholar 

  • Foley S (1992) Vein-plus-wall-rock melting mechanisms in the lithosphere and the origin of potassic alkaline magmas. Lithos 28(3):435–453

    Article  Google Scholar 

  • Foley SF, Jackson SE, Fryer BJ, Greenouch JD, Jenner GA (1996) Trace element partition coefficients for clinopyroxene and phlogopite in an alkaline lamprophyre from Newfoundland by LAM-ICP-MS. Geochimica et Cosmochimica Acta 60(4):629–638

    Article  Google Scholar 

  • Ghiorso MS, Carmichael ISE (1988) Modelling magmtic systems: petrologic applications. In: Carmichael ISE, Eugster HP (eds) Thermodynamic modelling of geological materials: Minerals, fluids and melts. Reviews in Mineralogy, Mineral Soc Am 17:467-499

  • Giannetti B (1982) Cumulate inclusions from K-rich magmas, Roccamonfina volcano, Italy. Earth Planet Sci Lett 57(2):313–335

    Article  Google Scholar 

  • Giannetti B, Luhr JF (1990) Phlogopite-clinopyroxenite nodules from high-K magmas, Roccamonfina Volcano, Italy: evidence for a low-pressure metasomatic origin. Earth Planet Sci Lett 101:404–424

    Article  Google Scholar 

  • Greene AR, DeBari SM, Kelemen PB, Blusztajn J, Clift PD (2006) A detailed geochemical study of Island arc crust: the Talkeetna arc section, South-Central Alaska. J Petrol 47(6):1051–1093

    Article  Google Scholar 

  • Grove TL, Parman SW, Bowring SA, Price RC, Baker MB (2002) The role of an H2O-rich fluid component in the generation of primitive basaltic andesites and andesites from the Mt. Shasta region, N. California. Contrib Miner Petrol 142(4):375–396

    Article  Google Scholar 

  • Grove TL, Elkins-Tanton LT, Parman SW, Chatterjee N, Müntener O, Gaetani GA (2003) Fractional crystallization and mantle-melting controls on calc-alkaline differentiation trends. Contrib Miner Petrol 145:515–533

    Article  Google Scholar 

  • Grove TL, Till CB, Krawczynski MJ (2012) The role of H2O in subduction zone magmatism. Annu Rev Earth Planet Sci 40:413–439

    Article  Google Scholar 

  • Hammarstrom JM, Zen E-a (1986) Aluminium in hornblende: an empirical igneous geobarometer. Am Mineral 71:1297–1313

    Google Scholar 

  • Hart SR, Dunn T (1993) Experimental cpx/melt partitioning of 24 trace elements. Contrib Miner Petrol 113(1):1–8

    Article  Google Scholar 

  • Hermann J, Müntener O, Günther D (2001) Differentiation of mafic magma in a continental crust-to-mantle transition zone. J Petrol 42(1):189–206

    Article  Google Scholar 

  • Hochstaedter AG, Ryan JG, Luhr JF, Hasenaka T (1996) On B/Be ratios in the Mexican volcanic belt. Geochim Cosmochim Acta 60(4):613–628

    Article  Google Scholar 

  • Holland T, Blundy J (1994) Non-ideal interactions in calcic amphiboles and their bearing on amphibole-plagioclase thermometry. Contrib Miner Petrol 116(4):433–447

    Article  Google Scholar 

  • Hollister LS, Grissom GC, Peters EK, Stowell HH, Sisson VB (1987) Confirmation of the empirical correlation of Al in hornblende with pressure of solidification of calc-alklaline plutons. Am Mineral 72:231–239

    Google Scholar 

  • Irvine TN, Baragar WRA (1971) A guide to the chemical classification of the common volcanic rocks. Can J Earth Sci 8(5):523–548

    Article  Google Scholar 

  • Jagoutz OE (2010) Construction of the granitoid crust of an island arc. Part II: a quantitative petrogenetic model. Contrib Miner Petrol 160:359–381

    Article  Google Scholar 

  • Jagoutz O, Schmidt M (2012) The formation and bulk composition of modern juvenile continental crust: the Kohistan arc. Chem Geol 298–99:79–96

    Article  Google Scholar 

  • Jagoutz O, Müntener O, Ulmer P, Pettke T, Burg J-P, Dawood H, Hussain S (2007) Petrology and mineral chemistry of lower crustal intrusions: the Chilas complex, Kohistan (NW Pakistan). J Petrol 48(10):1895–1953

    Article  Google Scholar 

  • Jagoutz O, Müntener O, Schmidt MW, Burg J-P (2011) The roles of flux- and decompression melting and their respective fractionation lines for continental crust formation: evidence from the Kohistan arc. Earth Planet Sci Lett (303): 25-36

  • Kay SM, Kay RW (1985) Role of crystal cumulates and the oceanic crust in the formation of the lower crust of the Aleutian arc. Geology 13(7):461–464

    Article  Google Scholar 

  • Kelemen PB, Hanghoj K, Greene AR (2003) One view of the geochemistry of subduction related magmatic arcs, with an emphasis on primitive andesite and lower crust. In: Heinrich DH, Karl KT (eds) Treatise on Geochemistry. Pergamon, Oxford, pp 1–70

    Google Scholar 

  • Khain EV, Bibikova EV, Salnikova EB, Kröner A, Gibsher AS, Didenko AN, Degtyarev KE, Fedotova AA (2003) The Palaeo-Asian Ocean in the Neoproterozoic and early Palaeozoic: new geochronological data and palaeotectonic reconstructions. Precambr Res 122:329–358

    Article  Google Scholar 

  • Kozakov IK, Salnikova EB, Khain EV, Kovach VP, Berezhnaya NG, Yakoleva SZ, Plotkina YV (2002) Early Caledonian crystalline rocks of the lake zone in Mongolia: formation history and tectonic settings as deduced from U–Pb and Sm–Nd datings. Geotectonics 36(2):156–166

    Google Scholar 

  • Langmuir CH (1989) Geochemical consequences of in situ crystallization. Nature 340(6230):199–205

    Article  Google Scholar 

  • Longerich HP, Jackson SE, Gunther D (1996) Inter-laboratory note. Laser ablation inductively coupled plasma mass spectrometric transient signal data acquisition and analyte concentration calculation. J Anal At Spectrom 11(9):899–904

    Article  Google Scholar 

  • Luhr JF, Carmichael IS (1981) The Colima volcanic complex, Mexico: part II. Late-quaternary cinder cones. Contrib Miner Petrol 76(2):127–147

    Article  Google Scholar 

  • Luhr JF, Allan JF, Carmichael IS, Nelson SA, Hasenaka T (1989) Primitive calc-alkaline and alkaline rock types from the Western Mexican Volcanic Belt. J Geophys Res Solid Earth 94(B4):4515–4530

    Article  Google Scholar 

  • Maria AH, Luhr JF (2008) Lamprophyres, basanites, and basalts of the western Mexican volcanic belt: volatile contents and a vein-wallrock melting relationship. J Petrol 49(12):2123–2156

    Google Scholar 

  • Melzer S, Foley SF (2000) Phase relations and fractionation sequences in potassic magma series modelled in the system CaMgSi2O6-KAlSiO4-Mg2SiO4-SiO2-F2O, at 1 bar to 18 kbar. Contrib Miner Petrol 138(2):186–197

    Article  Google Scholar 

  • Modreski PJ, Boettcher AL (1972) The stability of phlogopite + enstatite at high pressures; a model for micas in the interior of the Earth. Am J Sci 272(9):852–869

    Article  Google Scholar 

  • Müntener O, Kelemen P, Grove T (2001) The role of H2O during crystallization of primitive arc magmas under uppermost mantle conditions and genesis of igneous pyroxenites: an experimental study. Contrib Miner Petrol 141(6):643–658

    Article  Google Scholar 

  • Naney M (1983) Phase equilibria of rock-forming ferromagnesian silicates in granitic systems. Am J Sci 283(10):993–1033

    Article  Google Scholar 

  • O'Neill HSC, Wall V (1987) The Olivine-Orthopyroxene-Spinel oxygen geobarometer, the nickel precipitation curve, and the oxygen fugacity of the Earth's Upper Mantle. J Petrol 28(6):1169–1191

    Article  Google Scholar 

  • Ownby SE, Lange RA, Hall CM (2008) The eruptive history of the Mascota volcanic field, western Mexico: age and volume constraints on the origin of andesite among a diverse suite of lamprophyric and calc-alkaline lavas. J Volcanol Geoth Res 177(4):1077–1091

    Article  Google Scholar 

  • Pan Y, Fleet ME (2002) Compositions of the apatite-group minerals: substitution mechanisms and controlling factors. Rev Mineral Geochem 48(1):13–49

    Article  Google Scholar 

  • Peccerillo A, Taylor SR (1976) Geochemistry of eocene calc-alkaline volcanic rocks from the Kastamonu area, Northern Turkey. Contrib Miner Petrol 58(1):63–81

    Article  Google Scholar 

  • Prelevic D, Foley S, Cvetkovic V, Romer R (2004) Origin of minette by mixing of lamproite and dacite magmas in Veliki Majdan, Serbia. J Petrol 45(4):759–792

    Article  Google Scholar 

  • Putirka KD (2008) Thermometers and barometers for volcanic systems. Rev Mineral Geochem 69(1):61–120

    Article  Google Scholar 

  • Righter K, Carmichael ISE (1996) Phase equilibria of phlogopite lamprophyres from western Mexico: biotite–liquid equilibria and P–T; estimates for biotite-bearing igneous rocks. Contrib Miner Petrol 123(1):1–21

    Article  Google Scholar 

  • Righter K, Rosas-Elguera J (2001) Alkaline lavas in the volcanic front of the Western Mexican volcanic belt: geology and petrology of the Ayutla and Tapalpa volcanic fields. J Petrol 42(12):2333–2361

    Article  Google Scholar 

  • Rowe MC, Kent AJR, Nielsen RL (2009) Subduction influence on oxygen fugacity and trace and volatile elements in basalts across the Cascade Volcanic Arc. J Petrol 50(1):61–91

    Article  Google Scholar 

  • Rudnick RL, Fountain DM (1995) Nature and composition of the continental crust: a lower crustal perspective. Rev Geophys 33(3):267–309

    Article  Google Scholar 

  • Sato H (1977) Nickel content of basaltic magmas: identification of primary magmas and a measure of the degree of olivine fractionation. Lithos 10(2):113–120

    Article  Google Scholar 

  • Sato K (1997) Melting experiments on a synthetic olivine lamproite composition up to 8 GPa: implication to its petrogenesis. J Geophys Res 102(B7):14751–14764

    Article  Google Scholar 

  • Schmidt MW (1992) Amphibole composition in tonalite as a function of pressure: an experimental calibration of the Al-in-hornblende barometer. Contrib Miner Petrol 110:304–310

    Article  Google Scholar 

  • Sengör AMC, Natalín BA, Burtman VS (1993) Evolution of the Altaid tectonic collage and Palaeozoic crustal growth in Eurasia. Nature 364:299–307

    Article  Google Scholar 

  • Sengör AMC, Natalín BA, Burtman VS (1994) Tectonic evolution of Altaides. Russ Geol Geophys 35:33–47

    Google Scholar 

  • Shaw DM (2006) Trace elements in magmas: A theoretical treatment. Cambridge University Press

  • Shaw CSJ, Eyzaguirre J (2000) Origin of megacrysts in the mafic alkaline lavas of the West Eifel volcanic field, Germany. Lithos 50(1‚Äì3):75–95

    Article  Google Scholar 

  • Sisson TW, Grove TL (1993) Experimental investigations of the role of H2O in calc-alkaline differentiation and subduction zone magmatism. Contrib Miner Petrol 113:143–166

    Article  Google Scholar 

  • Sisson TW, Ratajeski K, Hankins WB, Glazner AF (2005) Voluminous granitic magmas from common basaltic sources. Contrib Miner Petrol 148:635–661

    Article  Google Scholar 

  • Sun S, McDonough WF (1989) Chemical and isotopic systematics of oceanic basalts: implications for mantle composition and processes. J Geol Soc Lond 42(1):313–345

    Article  Google Scholar 

  • Stolper E, Newman S (1994) The role of water in the petrogenesis of Mariana trough magmas. Earth Planet Sci Lett 121(3):293–325

    Google Scholar 

  • Tatsumi Y, Shukuno H, Tani K, Takahashi N, Kodaira S, Kogiso T (2008) Structure and growth of the Izu-Bonin-Mariana arc crust: 2. Role of crust-mantle transformation and the transparent Moho in arc crust evolution. J Geophys Res 113(B2):B02203

    Google Scholar 

  • Trommsdorff V, Connolly JA (1996) The ultramafic contact aureole about the Bregaglia (Bergell) tonalite: isograds and a thermal model. Schweiz Mineral Petrogr Mitt 76(3):537–547

    Google Scholar 

  • van Bergen MJ, Ghezzo C, Ricci CA (1983), Minette inclusions in the rhyodacitic lavas of Mt. Amiata (Central Italy): mineralogical and chemical evidence of mixing between Tuscan and Roman type magmas. J Volcanol Geoth Res 19(1):1–35

    Article  Google Scholar 

  • Van Kooten GK (1980) Mineralogy, petrology, and geochemistry of an ultrapotassic basaltic suite, central Sierra Nevada, California, USA. J Petrol 21(4):651–684

    Article  Google Scholar 

  • Van Orman JA, Grove TL, Shimizu N (2001) Rare earth element diffusion in diopside: influence of temperature, pressure, and ionic radius, and an elastic model for diffusion in silicates. Contrib Miner Petrol 141(6):687–703

    Article  Google Scholar 

  • Vigouroux N, Wallace PJ, Kent AJ (2008) Volatiles in high-K magmas from the western Trans-Mexican volcanic belt: evidence for fluid fluxing and extreme enrichment of the mantle wedge by subduction processes. J Petrol 49(9):1589–1618

    Article  Google Scholar 

  • Villemant B, Jaffrezic H, Joron J-L, Treuil M (1981) Distribution coefficients of major and trace elements; fractional crystallization in the alkali basalt series of Chaîne des Puys (Massif Central, France). Geochim Cosmochim Acta 45(11):1997–2016

    Article  Google Scholar 

  • Wallace P, Carmichael ISE (1989) Minette lavas and associated leucitites from the western front of the Mexican Volcanic Belt: petrology, chemistry, and origin. Contrib Miner Petrol 103(4):470–492

    Article  Google Scholar 

  • Wannamaker PE, Hulen JB, Heizler MT (2000) Early Miocene lamproite from the Colorado Plateau tectonic province, Southeastern Utah, USA. J Volcanol Geotherm Res 96(3, 4):175–190

    Article  Google Scholar 

  • Watson EB, Green TH (1981) Apatite/liquid partition coefficients for the rare earth elements and strontium. Earth Planet Sci Lett 56:405–421

    Article  Google Scholar 

  • Wyllie PJ, Sekine T (1982) The formation of mantle phlogopite in subduction zone hybridization. Contrib Miner Petrol 79(4):375–380

    Article  Google Scholar 

  • Yoder HS, Eugster H (1954) Phlogopite synthesis and stability range. Geochimica et Cosmochimica Acta 6(4):157–185

    Article  Google Scholar 

  • Yoder HS, Kushiro I (1969) Melting of a hydrous phase: phlogopite. Am J Sci 267-A:558–582

    Google Scholar 

Download references

Acknowledgments

We thank Nilanjan Chatterjee for assistance with microprobe work, Markus Wälle for LA-ICPMS support, Uyanga Bold and Lkhagva-Ochir Said for helping to organize fieldwork logistics, Adam Bockelie and Yerenburged Munkhbold for their assistance in the field. We are grateful for many stimulating discussions with Francis MacDonald, Emily Smith, and Uyanga Bold concerning the tectonic history of the Altaids. Robert Luth and Tom W. Sisson provided thoughtful reviews of this manuscript. This work was supported by the National Science Foundation (Grant Number EAR-1322032).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Claire E. Bucholz.

Additional information

Communicated by J. Hoefs.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bucholz, C.E., Jagoutz, O., Schmidt, M.W. et al. Phlogopite- and clinopyroxene-dominated fractional crystallization of an alkaline primitive melt: petrology and mineral chemistry of the Dariv Igneous Complex, Western Mongolia. Contrib Mineral Petrol 167, 994 (2014). https://doi.org/10.1007/s00410-014-0994-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00410-014-0994-6

Keywords

Navigation