Skip to main content
Log in

Clinical Significance of Forced Oscillation Technique for Evaluation of Small Airway Disease in Interstitial Lung Diseases

  • Published:
Lung Aims and scope Submit manuscript

ABSTRACT

Purpose

Small airway disease (SAWD) in patients with interstitial lung disease (ILD) is often assessed by high-resolution computed tomography (HRCT). However, frequent HRCT examinations result in a high level of radiographic exposure. This study investigated the utility of the forced oscillation technique (FOT) to evaluate SAWD in patients with ILD.

Methods

Broadband FOT using a commercially available device (MostGraph-01) and pulmonary function tests (PFT) were performed in 90 patients with ILD. HRCT images taken within 3 months were reviewed. The patients were divided into two groups according to the presence or absence of SAWD findings detected by HRCT. Clinical characteristics, PFT, and FOT between the two groups were compared.

Results

Of the 90 patients with ILD, 19 were classified as having SAWD findings (the presence group) and 71 as not having SAWD findings (the absence group). There were no significant differences in parameters of PFT between the two groups. The presence group had higher absolute values of reactance at 5 Hz (X5), resonant frequency (Fres), and low-frequency reactance area (ALX) than did the absence group. A within-breath change analysis demonstrated that the change in X5, Fres, and ALX between expiration and inspiration (ΔX5, ΔFres, ΔALX, respectively) was significantly different between the groups. A univariate analysis revealed that X5, Fres, ALX, ΔX5, ΔFres, ΔALX were significantly associated with the presence of SAWD findings. Multivariate analysis validated that Fres was related to the presence of SAWD findings.

Conclusions

The FOT may be useful in detecting and evaluating SAWD in patients with ILD. Trial registration: UMIN 000020733.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Abbreviations

ALX:

A low-frequency reactance area

AUC:

Area under the curve

CHP:

Chronic hypersensitivity pneumonitis

COPD:

Chronic obstructive pulmonary disease

CVD:

Collagen vascular disease

CVD-ILD:

CVD-associated ILD

DLCO:

Diffusing capacity for carbon monoxide

EFL:

Expiratory flow limitation

FEV1 :

Forced expiratory volume in one second

FEF25–75 :

Forced expiratory flow between 25 and 75 % of the forced vital capacity

FOT:

Forced oscillation technique

FRC:

Functional residual capacity

Fres:

Resonant frequency

FVC:

Forced vital capacity

HRCT:

High-resolution computed tomography

IC:

Inspiratory capacity

IIP:

Idiopathic interstitial pneumonias

ILD:

Interstitial lung disease

KL-6:

Krebs von den Lungen-6

LDH:

Lactate dehydrogenase

MRC:

Medical Research Council

ROC:

Receiver operating characteristic

Rrs:

Respiratory system resistance

RV:

Residual volume

R5:

Rrs at 5 Hz

R20:

Rrs at 20 Hz

R5–R20:

The difference between R5 and R20

SAWD:

Small airway disease

SP-D:

Surfactant protein-D

TLC:

Total lung capacity

Xrs:

Respiratory system reactance

X5:

Reactance 5 Hz

Δ:

The difference between expiratory and inspiratory phases

References

  1. American Thoracic S, European Respiratory S (2002) American thoracic society/European respiratory society International multidisciplinary consensus classification of the idiopathic interstitial pneumonias. This joint statement of the American thoracic society (ATS), and the European respiratory society (ERS) was adopted by the ATS board of directors, June 2001 and by the ERS executive committee, June 2001. Am J Respir Crit Care Med 165(2):277–304. doi:10.1164/ajrccm.165.2.ats01

    Article  Google Scholar 

  2. Travis WD, Costabel U, Hansell DM et al (2013) An official American thoracic society/European respiratory society statement: update of the international multidisciplinary classification of the idiopathic interstitial pneumonias. Am J Respir Crit Care Med 188(6):733–748. doi:10.1164/rccm.201308-1483ST

    Article  PubMed  Google Scholar 

  3. Nakanishi M, Fukuoka J, Tanaka T et al (2011) Small airway disease associated with Sjogren’s syndrome: clinico-pathological correlations. Respir Med 105(12):1931–1938. doi:10.1016/j.rmed.2011.08.009

    Article  PubMed  Google Scholar 

  4. Devouassoux G, Cottin V, Liote H et al (2009) Characterisation of severe obliterative bronchiolitis in rheumatoid arthritis. Eur Respir J 33(5):1053–1061. doi:10.1183/09031936.00091608

    Article  CAS  PubMed  Google Scholar 

  5. Pipavath SJ, Lynch DA, Cool C et al (2005) Radiologic and pathologic features of bronchiolitis. AJR Am J Roentgenol 185(2):354–363. doi:10.2214/ajr.185.2.01850354

    Article  PubMed  Google Scholar 

  6. Hayakawa H, Sato A, Imokawa S et al (1996) Bronchiolar disease in rheumatoid arthritis. Am J Respir Crit Care Med 154(5):1531–1536. doi:10.1164/ajrccm.154.5.8912776

    Article  CAS  PubMed  Google Scholar 

  7. Silva CI, Churg A, Muller NL (2007) Hypersensitivity pneumonitis: spectrum of high-resolution CT and pathologic findings. AJR Am J Roentgenol 188(2):334–344. doi:10.2214/AJR.05.1826

    Article  PubMed  Google Scholar 

  8. Sharma V, Shaaban AM, Berges G et al (2002) The radiological spectrum of small-airway diseases. Semin Ultrasound CT MR 23(4):339–351

    Article  PubMed  Google Scholar 

  9. Arakawa H, Webb WR (1998) Air trapping on expiratory high-resolution CT scans in the absence of inspiratory scan abnormalities: correlation with pulmonary function tests and differential diagnosis. AJR Am J Roentgenol 170(5):1349–1353. doi:10.2214/ajr.170.5.9574614

    Article  CAS  PubMed  Google Scholar 

  10. Hansell DM (2001) Small airways diseases: detection and insights with computed tomography. Eur Respir J 17(6):1294–1313

    Article  CAS  PubMed  Google Scholar 

  11. Mori K, Shirai T, Mikamo M et al (2011) Colored 3-dimensional analyses of respiratory resistance and reactance in COPD and asthma. COPD 8(6):456–463. doi:10.3109/15412555.2011.626818

    Article  PubMed  Google Scholar 

  12. Mikamo M, Shirai T, Mori K et al (2013) Predictors of phase III slope of nitrogen single-breath washout in COPD. Respir Physiol Neurobiol 189(1):42–46. doi:10.1016/j.resp.2013.06.018

    Article  PubMed  Google Scholar 

  13. Shirai T, Mori K, Mikamo M et al (2013) Respiratory mechanics and peripheral airway inflammation and dysfunction in asthma. Clin Exp Allergy 43(5):521–526. doi:10.1111/cea.12083

    Article  CAS  PubMed  Google Scholar 

  14. Paredi P, Goldman M, Alamen A et al (2010) Comparison of inspiratory and expiratory resistance and reactance in patients with asthma and chronic obstructive pulmonary disease. Thorax 65(3):263–267. doi:10.1136/thx.2009.120790

    Article  PubMed  Google Scholar 

  15. Gonem S, Umar I, Burke D et al (2012) Airway impedance entropy and exacerbations in severe asthma. Eur Respir J 40(5):1156–1163. doi:10.1183/09031936.00228611

    Article  PubMed  Google Scholar 

  16. Williamson PA, Clearie K, Menzies D et al (2011) Assessment of small-airways disease using alveolar nitric oxide and impulse oscillometry in asthma and COPD. Lung 189(2):121–129. doi:10.1007/s00408-010-9275-y

    Article  PubMed  Google Scholar 

  17. Fujii M, Shirai T, Mori K et al (2015) Inspiratory resonant frequency of forced oscillation technique as a predictor of the composite physiologic index in interstitial lung disease. Respir Physiol Neurobiol 207:22–27. doi:10.1016/j.resp.2014.12.009

    Article  PubMed  Google Scholar 

  18. Oostveen E, MacLeod D, Lorino H et al (2003) The forced oscillation technique in clinical practice: methodology, recommendations and future developments. Eur Respir J 22(6):1026–1041. doi:10.1183/09031936.03.00089403

    Article  CAS  PubMed  Google Scholar 

  19. Miller MR, Hankinson J, Brusasco V et al (2005) Standardisation of spirometry. Eur Respir J 26(2):319–338. doi:10.1183/09031936.05.00034805

    Article  CAS  PubMed  Google Scholar 

  20. Macintyre N, Crapo RO, Viegi G et al (2005) Standardisation of the single-breath determination of carbon monoxide uptake in the lung. Eur Respir J 26(4):720–735. doi:10.1183/09031936.05.00034905

    Article  CAS  PubMed  Google Scholar 

  21. Hansell DM, Bankier AA, MacMahon H et al (2008) Fleischner Society: glossary of terms for thoracic imaging. Radiology 246(3):697–722. doi:10.1148/radiol.2462070712

    Article  PubMed  Google Scholar 

  22. Sugiyama A, Hattori N, Haruta Y et al (2013) Characteristics of inspiratory and expiratory reactance in interstitial lung disease. Respir Med 107(6):875–882. doi:10.1016/j.rmed.2013.03.005

    Article  CAS  PubMed  Google Scholar 

  23. Mori K, Shirai T, Mikamo M et al (2013) Respiratory mechanics measured by forced oscillation technique in combined pulmonary fibrosis and emphysema. Respir Physiol Neurobiol 185(2):235–240. doi:10.1016/j.resp.2012.10.009

    Article  PubMed  Google Scholar 

  24. Dellaca RL, Santus P, Aliverti A et al (2004) Detection of expiratory flow limitation in COPD using the forced oscillation technique. Eur Respir J 23(2):232–240

    Article  CAS  PubMed  Google Scholar 

  25. Timmins SC, Diba C, Farrow CE et al (2012) The relationship between airflow obstruction, emphysema extent, and small airways function in COPD. Chest 142(2):312–319. doi:10.1378/chest.11-2169

    Article  PubMed  Google Scholar 

  26. Verbanck S (2012) Physiological measurement of the small airways. Respiration 84(3):177–188. doi:10.1159/000341742

    Article  PubMed  Google Scholar 

  27. Koulouris NG, Hardavella G (2011) Physiological techniques for detecting expiratory flow limitation during tidal breathing. Eur Respir Rev 20(121):147–155. doi:10.1183/09059180.00001911

    Article  CAS  PubMed  Google Scholar 

  28. Lynch DA (2009) Lung disease related to collagen vascular disease. J Thorac Imaging 24(4):299–309. doi:10.1097/RTI.0b013e3181c1acec

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tomoyuki Fujisawa.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

All procedures performed in studies involving human participants were in accordance with the ethical standards of the institutional and/or national research committee and with the 1964 Helsinki declaration and its later amendments or comparable ethical standards.

Informed consent

Informed consent was obtained from all individual participants included in the study.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mikamo, M., Fujisawa, T., Oyama, Y. et al. Clinical Significance of Forced Oscillation Technique for Evaluation of Small Airway Disease in Interstitial Lung Diseases. Lung 194, 975–983 (2016). https://doi.org/10.1007/s00408-016-9949-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00408-016-9949-1

Keywords

Navigation