Skip to main content
Log in

Distal femoral fractures in the elderly: biomechanical analysis of a polyaxial angle-stable locking plate versus a retrograde intramedullary nail in a human cadaveric bone model

  • Trauma Surgery
  • Published:
Archives of Orthopaedic and Trauma Surgery Aims and scope Submit manuscript

Abstract

Introduction

Compromised bone quality and the need for early mobilization still lead to high rates of implant failure in geriatric patients with distal femoral fractures. With the newest generation of polyaxial locking plates and the proven retrograde femoral nails today two minimally invasive surgical procedures have been established. Indications for both procedures overlap. This study attempts to define the strength and failure mode of both surgical procedures.

Materials and methods

A standardized fracture model was established to simulate an unstable AO/OTA 33-A3 fracture. Eight pairs of human cadaver femora (mean age 79 years, range 63–100 years) with compromised bone quality were used. Osteosyntheses with eight retrograde femoral nails and eight locking plates were randomly performed. A materials testing machine (Instron 5566) was used to perform cyclic stress tests according to a standardized loading protocol, up to a maximum load of 5,000 N.

Results

All specimens survived loading of at least 2,500 N. Three nail and one plate construct survived a maximum load of 5,000 N. The mean compressive force leading to failure was 4,400 N (CI 4,122–4,678 N) for nail osteosynthesis and 4,429 N (CI 3,653–5,204 N) for plate osteosynthesis (p = 0.943). Proximal cutting out of the osteosynthesis was the most common reason for interruption in the nail and plate osteosyntheses. Significant differences between the retrograde femoral nail and plate osteosyntheses were seen under testing conditions for plastic deformation and stiffness of the constructs (p = 0.002 and p = 0.001, respectively).

Conclusion

Based on our results, no statements regarding the superiority of either of the devices can be made. Even though the load to failure values for both osteosyntheses were much higher than the loads experienced during normal walking; however, because only axial loading was applied, it remains unclear whether both osteosyntheses meet the estimated requirements for postoperative full weight-bearing for an average heavy patient with a distal femoral fracture.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Aldrian S, Schuster R, Haas N, Erhart J, Strickner M, Blutsch B, Wernhart S, Leitgeb J, Platzer P (2013) Fixation of supracondylar femoral fractures following total knee arthroplasty: is there any difference comparing angular stable plate fixation versus rigid interlocking nail fixation? Arch Orthop Trauma Surg 133:921–927

    Article  PubMed  Google Scholar 

  2. Bergmann G, Deuretzbacher G, Heller M, Graichen F, Rohlmann A, Strauss J, Duda GN (2001) Hip contact forces and gait patterns from routine activities. J Biomech 34:859–871

    Article  CAS  PubMed  Google Scholar 

  3. Bottlang M, Doornink J, Fitzpatrick DC, Madey SM (2009) Far cortical locking can reduce stiffness of locked plating constructs while retaining construct strength. J Bone Joint Surg Am 91:1985–1994

    Article  PubMed Central  PubMed  Google Scholar 

  4. Cristofolini L, Viceconti M, Cappello A, Toni A (1996) Mechanical validation of whole bone composite femur models. J Biomech 29:525–535

    Article  CAS  PubMed  Google Scholar 

  5. Duan X, Li T, Mohammed AQ, Xiang Z (2011) Reamed intramedullary nailing versus unreamed intramedullary nailing for shaft fracture of femur: a systematic literature review. Arch Orthop Trauma Surg 131:1445–1452

    Article  PubMed  Google Scholar 

  6. Döbele S, Horn C, Eichhorn S, Buchholtz A, Lenich A, Burgkart R, Nüssler AK, Lucke M, Andermatt D, Koch R, Stöckle U (2010) The dynamic locking screw (DLS) can increase interfragmentary motion on the near cortex of locked plating constructs by reducing the axial stiffness. Langenbecks Arch Surg 395:421–428

    Article  PubMed  Google Scholar 

  7. Egol KA, Kubiak EN, Fulkerson E, Kummer FJ, Koval KJ (2004) Biomechanics of locked plates and screws. J Orthop Trauma 18:488–493

    Article  PubMed  Google Scholar 

  8. Fankhauser F, Gruber G, Schippinger G, Boldin C, Hofer HP, Grechenig W, Szyszkowitz R (2004) Minimal-invasive treatment of distal femoral fractures with the LISS (Less Invasive Stabilization System): a prospective study of 30 fractures with a follow up of 20 months. Acta Orthop Scand 75:56–60

    Article  PubMed  Google Scholar 

  9. Fensky F, Nüchtern JV, Kolb JP, Huber S, Rupprecht M, Jauch SY, Sellenschloh K, Püschel K, Morlock MM, Rueger JM, Lehmann W (2013) Cement augmentation of the proximal femoral nail antirotation for the treatment of osteoporotic pertrochanteric fractures—a biomechanical cadaver study. Injury 44:802–807

    Article  CAS  PubMed  Google Scholar 

  10. Firoozbakhsh K, Behzadi K, DeCoster TA, Moneim MS, Naraghi FF (1995) Mechanics of retrograde nail versus plate fixation for supracondylar femur fractures. J Orthop Trauma 9:152–157

    Article  CAS  PubMed  Google Scholar 

  11. Greiwe RM, Archdeacon MT (2007) Locking plate technology: current concepts. J Knee Surg 20:50–55

    PubMed  Google Scholar 

  12. Gwathmey FW, Jones-Quaidoo SM, Kahler D, Hurwitz S, Cui Q (2010) Distal femoral fractures: current concepts. J Am Acad Orthop Surg 18:597–607

    PubMed  Google Scholar 

  13. Hartin NL, Harris I, Hazratwala K (2006) Retrograde nailing versus fixed-angle blade plating for supracondylar femoral fractures: a randomized controlled trial. ANZ J Surg 76:290–294

    Article  PubMed  Google Scholar 

  14. Heiney JP, Barnett MD, Vrabec GA, Schoenfeld AJ, Baji A, Njus GO (2009) Distal femoral fixation: a biomechanical comparison of trigen retrograde intramedullary (i.m.) nail, dynamic condylar screw (DCS), and locking compression plate (LCP) condylar plate. J Trauma 66:443–449

    Article  PubMed  Google Scholar 

  15. Hente R, Füchtmeier B, Schlegel U, Ernstberger A, Perren SM (2004) The influence of cyclic compression and distraction on the healing of experimental tibial fractures. J Orthop Res 22:709–715

    Article  CAS  PubMed  Google Scholar 

  16. Hwang JH, Oh JK, Oh CW, Yoon YC, Choi HW (2012) Mismatch of anatomically pre-shaped locking plate on Asian femurs could lead to malalignment in the minimally invasive plating of distal femoral fractures: a cadaveric study. Arch Orthop Trauma Surg 132:51–56

    Article  PubMed  Google Scholar 

  17. Hüfner T, Citak M, Suero EM, Miller B, Kendoff D, Krettek C (2011) Femoral malrotation after unreamed intramedullary nailing: an evaluation of influencing operative factors. J Orthop Trauma 25:224–227

    Article  PubMed  Google Scholar 

  18. Kenwright J, Goodship AE (1989) Controlled mechanical stimulation in the treatment of tibial fractures. Clin Orthop Relat Res 241:36–47

    PubMed  Google Scholar 

  19. Kreb DL, Blokhuis TJ, van Wessem KJ, Bemelman M, Lansink KW, Leenen LP (2013) Intramedullary nailing without interlocking screws for femoral and tibial shaft fractures. Arch Orthop Trauma Surg 133:1109–1113

    Article  PubMed  Google Scholar 

  20. Kregor PJ, Stannard JA, Zlowodzki M, Cole PA (2004) Treatment of distal femur fractures using the less invasive stabilization system: surgical experience and early clinical results in 103 fractures. J Orthop Trauma 18:509–520

    Article  PubMed  Google Scholar 

  21. Leggon RE, Feldmann DD (2001) Retrograde femoral nailing: a focus on the knee. Am J Knee Surg 14:109–118

    CAS  PubMed  Google Scholar 

  22. Link BC, Babst R (2012) Current concepts in fractures of the distal femur. Acta Chir Orthop Traumatol Cech 79:11–20

    PubMed  Google Scholar 

  23. Meyer RW, Plaxton NA, Postak PD, Gilmore A, Froimson MI, Greenwald AS (2000) Mechanical comparison of a distal femoral side plate and a retrograde intramedullary nail. J Orthop Trauma 14:398–404

    Article  CAS  PubMed  Google Scholar 

  24. Miclau T, Holmes W, Martin RE, Krettek C, Schandelmaier P (1998) Plate osteosynthesis of the distal femur: surgical techniques and results. J South Orthop Assoc 7:161–170

    CAS  PubMed  Google Scholar 

  25. Moed BR, Watson JT (1995) Retrograde intramedullary nailing, without reaming, of fractures of the femoral shaft in multiply injured patients. J Bone Joint Surg Am 77:1520–1527

    CAS  PubMed  Google Scholar 

  26. Neubauer T, Krawany M, Leitner L, Karlbauer A, Wagner M, Plecko M (2012) Retrograde femoral nailing in elderly patients: outcome and functional results. Orthopedics 35:e855–e861

    Article  PubMed  Google Scholar 

  27. Ng AC, Drake MT, Clarke BL, Sems SA, Atkinson EJ, Achenbach SJ, Melton LJ (2012) Trends in subtrochanteric, diaphyseal, and distal femur fractures, 1984–2007. Osteoporos Int 23:1721–1726

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  28. Niedhart C, Braun K, Graf Stenbock-Fermor N, Bours F, Schneider P, Zilkens KW, Niethard FU (2003) The value of peripheral quantitative computed tomography (pQCT) in the diagnosis of osteoporosis. Z Orthop Ihre Grenzgeb 141:135–142

    Article  CAS  PubMed  Google Scholar 

  29. Perren SM (2002) Evolution of the internal fixation of long bone fractures. The scientific basis of biological internal fixation: choosing a new balance between stability and biology. J Bone Joint Surg Br 84:1093–1110

    Article  PubMed  Google Scholar 

  30. Ricci WM, Bellabarba C, Evanoff B, Herscovici D, DiPasquale T, Sanders R (2001) Retrograde versus antegrade nailing of femoral shaft fractures. J Orthop Trauma 15:161–169

    Article  CAS  PubMed  Google Scholar 

  31. Ricci WM, Streubel PN, Morshed S, Collinge C, Nork SE, Gardner MJ (2013) Risk factors for failure of locked plate fixation of distal femur fractures: an analysis of 335 cases. J Orthop Trauma 28:83–89

    Article  Google Scholar 

  32. Ruchholtz S, El-Zayat B, Kreslo D, Bücking B, Lewan U, Krüger A, Zettl R (2013) Less invasive polyaxial locking plate fixation in periprosthetic and peri-implant fractures of the femur—a prospective study of 41 patients. Injury 44:239–248

    Article  PubMed  Google Scholar 

  33. Sasaki D, Hatori M, Kotajima S, Kokubun S (2005) Fatigue fracture of the distal femur arising in the elderly. Arch Orthop Trauma Surg 125:422–425

    Article  PubMed  Google Scholar 

  34. Schütz M, Müller M, Regazzoni P, Höntzsch D, Krettek C, Van der Werken C, Haas N (2005) Use of the less invasive stabilization system (LISS) in patients with distal femoral (AO33) fractures: a prospective multicenter study. Arch Orthop Trauma Surg 125:102–108

    Article  PubMed  Google Scholar 

  35. Sievänen H, Koskue V, Rauhio A, Kannus P, Heinonen A, Vuori I (1998) Peripheral quantitative computed tomography in human long bones: evaluation of in vitro and in vivo precision. J Bone Miner Res 13:871–882

    Article  PubMed  Google Scholar 

  36. Singh SK, El-Gendy KA, Chikkamuniyappa C, Houshian S (2006) The retrograde nail for distal femoral fractures in the elderly: high failure rate of the condyle screw and nut. Injury 37:1004–1010

    Article  CAS  PubMed  Google Scholar 

  37. Soveid M, Serati AR, Masoompoor M (2005) Incidence of hip fracture in Shiraz, Iran. Osteoporos Int 16:1412–1416

    Article  PubMed  Google Scholar 

  38. Topp T, Müller T, Huss S, Kann PH, Weihe E, Ruchholtz S, Zettl RP (2012) Embalmed and fresh frozen human bones in orthopedic cadaveric studies: which bone is authentic and feasible? Acta Orthop 83:543–547

    Article  PubMed Central  PubMed  Google Scholar 

  39. Wang Z, Bhattacharyya T (2011) Trends in incidence of subtrochanteric fragility fractures and bisphosphonate use among the US elderly, 1996–2007. J Bone Miner Res 26:553–560

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  40. Weiss RJ, Montgomery SM, Al Dabbagh Z, Jansson KA (2009) National data of 6409 Swedish inpatients with femoral shaft fractures: stable incidence between 1998 and 2004. Injury 40:304–308

    Article  PubMed  Google Scholar 

  41. Wähnert D, Hoffmeier K, Fröber R, Hofmann GO, Mückley T (2011) Distal femur fractures of the elderly—different treatment options in a biomechanical comparison. Injury 42:655–659

    Article  PubMed  Google Scholar 

  42. Wähnert D, Hofmann-Fliri L, Götzen M, Kösters C, Windolf M, Raschke MJ (2013) Feasibility study on the potential of a spiral blade in osteoporotic distal femur fracture fixation. Arch Orthop Trauma Surg 133:1675–1679

    Article  PubMed  Google Scholar 

  43. Zlowodzki M, Bhandari M, Marek DJ, Cole PA, Kregor PJ (2006) Operative treatment of acute distal femur fractures: systematic review of 2 comparative studies and 45 case series (1989 to 2005). J Orthop Trauma 20:366–371

    Article  PubMed  Google Scholar 

  44. Zlowodzki M, Williamson S, Cole PA, Zardiackas LD, Kregor PJ (2004) Biomechanical evaluation of the less invasive stabilization system, angled blade plate, and retrograde intramedullary nail for the internal fixation of distal femur fractures. J Orthop Trauma 18:494–502

    Article  PubMed  Google Scholar 

  45. Zlowodzki M, Williamson S, Zardiackas LD, Kregor PJ (2006) Biomechanical evaluation of the less invasive stabilization system and the 95-degree angled blade plate for the internal fixation of distal femur fractures in human cadaveric bones with high bone mineral density. J Trauma 60:836–840

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

Zimmer Inc., Freiburg, Germany is acknowledged for providing the implants. We received no additional financial support for the execution of this study. In addition the Institutes of Anatomy and Cell Biology of Philipps University Marburg are acknowledged for their cooperation in making available the specimen.

Conflict of interest

S. R. and R. Z. are teaching consultants for Zimmer Inc. Freiburg, Germany. All other authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christopher Bliemel.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bliemel, C., Buecking, B., Mueller, T. et al. Distal femoral fractures in the elderly: biomechanical analysis of a polyaxial angle-stable locking plate versus a retrograde intramedullary nail in a human cadaveric bone model. Arch Orthop Trauma Surg 135, 49–58 (2015). https://doi.org/10.1007/s00402-014-2111-8

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00402-014-2111-8

Keywords

Navigation