Skip to main content

Advertisement

Log in

Heterogeneity in α-synuclein fibril activity correlates to disease phenotypes in Lewy body dementia

  • Original Paper
  • Published:
Acta Neuropathologica Aims and scope Submit manuscript

Abstract

α-Synuclein aggregation underlies pathological changes in Lewy body dementia. Recent studies highlight structural variabilities associated with α-synuclein aggregates in patient populations. Here, we develop a quantitative real-time quaking-induced conversion (qRT-QuIC) assay to measure permissive α-synuclein fibril-templating activity in tissues and cerebrospinal fluid (CSF). The assay is anchored through reference panels of stabilized ultra-short fibril particles. In humanized α-synuclein transgenic mice, qRT-QuIC identifies differential levels of fibril activity across the brain months before the deposition of phosphorylated α-synuclein in susceptible neurons. α-Synuclein fibril activity in cortical brain extracts from dementia with Lewy bodies (DLB) correlates with activity in matched ventricular CSF. Elevated α-synuclein fibril activity in CSF corresponds to reduced survival in DLB. α-Synuclein fibril particles amplified from cases with high fibril activity show superior templating in the formation of new inclusions in neurons relative to the same number of fibril particles amplified from DLB cases with low fibril activity. Our results highlight a previously unknown broad heterogeneity of fibril-templating activities in DLB that may contribute to disease phenotypes. We predict that quantitative assessments of fibril activities in CSF that correlate to fibril activities in brain tissue will help stratify patient populations as well as measure therapeutic responses to facilitate the development of α-synuclein-targeted therapeutics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Abdelmotilib H, Maltbie T, Delic V, Liu Z, Hu X, Fraser KB et al (2017) α-Synuclein fibril-induced inclusion spread in rats and mice correlates with dopaminergic neurodegeneration. Neurobiol Dis 105:84–98. https://doi.org/10.1016/j.nbd.2017.05.014

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Bousset L, Pieri L, Ruiz-Arlandis G, Gath J, Jensen PH, Habenstein B et al (2013) Structural and functional characterization of two alpha-synuclein strains. Nat Commun 4:2575. https://doi.org/10.1038/ncomms3575

    Article  CAS  PubMed  Google Scholar 

  3. Brás IC, Dominguez-Meijide A, Gerhardt E, Koss D, Lázaro DF, Santos PI et al (2020) Synucleinopathies: where we are and where we need to go. J Neurochem 153:433–454. https://doi.org/10.1111/jnc.14965

    Article  CAS  PubMed  Google Scholar 

  4. Buehler MJ (2006) Nature designs tough collagen: explaining the nanostructure of collagen fibrils. Proc Natl Acad Sci USA 103:12285–12290. https://doi.org/10.1073/pnas.0603216103

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Buell AK (2019) The growth of amyloid fibrils: rates and mechanisms. Biochem J 476:2677–2703. https://doi.org/10.1042/bcj20160868

    Article  CAS  PubMed  Google Scholar 

  6. Candelise N, Schmitz M, Llorens F, Villar-Piqué A, Cramm M, Thom T et al (2019) Seeding variability of different alpha synuclein strains in synucleinopathies. Ann Neurol 85:691–703. https://doi.org/10.1002/ana.25446

    Article  CAS  PubMed  Google Scholar 

  7. Chatani E, Lee YH, Yagi H, Yoshimura Y, Naiki H, Goto Y (2009) Ultrasonication-dependent production and breakdown lead to minimum-sized amyloid fibrils. Proc Natl Acad Sci USA 106:11119–11124. https://doi.org/10.1073/pnas.0901422106

    Article  PubMed  PubMed Central  Google Scholar 

  8. Chen GF, Xu TH, Yan Y, Zhou YR, Jiang Y, Melcher K et al (2017) Amyloid beta: structure, biology and structure-based therapeutic development. Acta Pharmacol Sin 38:1205–1235. https://doi.org/10.1038/aps.2017.28

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Chiti F, Dobson CM (2006) Protein misfolding, functional amyloid, and human disease. Annu Rev Biochem 75:333–366. https://doi.org/10.1146/annurev.biochem.75.101304.123901

    Article  CAS  PubMed  Google Scholar 

  10. Conway KA, Lee SJ, Rochet JC, Ding TT, Williamson RE, Lansbury PT Jr (2000) Acceleration of oligomerization, not fibrillization, is a shared property of both alpha-synuclein mutations linked to early-onset Parkinson’s disease: implications for pathogenesis and therapy. Proc Natl Acad Sci USA 97:571–576. https://doi.org/10.1073/pnas.97.2.571

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Coughlin DG, Hurtig HI, Irwin DJ (2020) Pathological influences on clinical heterogeneity in Lewy body diseases. Mov Disord 35:5–19. https://doi.org/10.1002/mds.27867

    Article  PubMed  Google Scholar 

  12. De Luca CMG, Elia AE, Portaleone SM, Cazzaniga FA, Rossi M, Bistaffa E et al (2019) Efficient RT-QuIC seeding activity for α-synuclein in olfactory mucosa samples of patients with Parkinson’s disease and multiple system atrophy. Transl Neurodegener 8:24. https://doi.org/10.1186/s40035-019-0164-x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Delic V, Chandra S, Abdelmotilib H, Maltbie T, Wang S, Kem D et al (2018) Sensitivity and specificity of phospho-Ser129 α-synuclein monoclonal antibodies. J Comp Neurol 526:1978–1990. https://doi.org/10.1002/cne.24468

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Fairfoul G, McGuire LI, Pal S, Ironside JW, Neumann J, Christie S et al (2016) Alpha-synuclein RT-QuIC in the CSF of patients with alpha-synucleinopathies. Ann Clin Transl Neurol 3:812–818. https://doi.org/10.1002/acn3.338

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Farrer M, Kachergus J, Forno L, Lincoln S, Wang DS, Hulihan M et al (2004) Comparison of kindreds with parkinsonism and alpha-synuclein genomic multiplications. Ann Neurol 55:174–179. https://doi.org/10.1002/ana.10846

    Article  CAS  PubMed  Google Scholar 

  16. Gispert S, Del Turco D, Garrett L, Chen A, Bernard DJ, Hamm-Clement J et al (2003) Transgenic mice expressing mutant A53T human alpha-synuclein show neuronal dysfunction in the absence of aggregate formation. Mol Cell Neurosci 24:419–429. https://doi.org/10.1016/s1044-7431(03)00198-2

    Article  CAS  PubMed  Google Scholar 

  17. Goedert M, Spillantini MG, Del Tredici K, Braak H (2013) 100 years of Lewy pathology. Nat Rev Neurol 9:13–24. https://doi.org/10.1038/nrneurol.2012.242

    Article  CAS  PubMed  Google Scholar 

  18. Groveman BR, Orrù CD, Hughson AG, Raymond LD, Zanusso G, Ghetti B et al (2018) Rapid and ultra-sensitive quantitation of disease-associated α-synuclein seeds in brain and cerebrospinal fluid by αSyn RT-QuIC. Acta Neuropathol Commun 6:7. https://doi.org/10.1186/s40478-018-0508-2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Guérin G, Wang H, Manners I, Winnik MA (2008) Fragmentation of fiberlike structures: sonication studies of cylindrical block copolymer micelles and behavioral comparisons to biological fibrils. J Am Chem Soc 130:14763–14771. https://doi.org/10.1021/ja805262v

    Article  CAS  PubMed  Google Scholar 

  20. Guerrero-Ferreira R, Taylor NM, Mona D, Ringler P, Lauer ME, Riek R et al (2018) Cryo-EM structure of alpha-synuclein fibrils. Elife. https://doi.org/10.7554/eLife.36402

    Article  PubMed  PubMed Central  Google Scholar 

  21. Hong L, Ko HW, Gwag BJ, Joe E, Lee S, Kim YT et al (1998) The cDNA cloning and ontogeny of mouse alpha-synuclein. NeuroReport 9:1239–1243. https://doi.org/10.1097/00001756-199804200-00051

    Article  CAS  PubMed  Google Scholar 

  22. Hyman BT, Phelps CH, Beach TG, Bigio EH, Cairns NJ, Carrillo MC et al (2012) National institute on aging-Alzheimer’s association guidelines for the neuropathologic assessment of Alzheimer’s disease. Alzheimers Dement 8:1–13. https://doi.org/10.1016/j.jalz.2011.10.007

    Article  PubMed  PubMed Central  Google Scholar 

  23. Kang UJ, Boehme AK, Fairfoul G, Shahnawaz M, Ma TC, Hutten SJ et al (2019) Comparative study of cerebrospinal fluid α-synuclein seeding aggregation assays for diagnosis of Parkinson’s disease. Mov Disord 34:536–544. https://doi.org/10.1002/mds.27646

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Kim WS, Kågedal K, Halliday GM (2014) Alpha-synuclein biology in Lewy body diseases. Alzheimers Res Ther 6:73. https://doi.org/10.1186/s13195-014-0073-2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Knowles TP, Waudby CA, Devlin GL, Cohen SI, Aguzzi A, Vendruscolo M et al (2009) An analytical solution to the kinetics of breakable filament assembly. Science 326:1533–1537. https://doi.org/10.1126/science.1178250

    Article  CAS  PubMed  Google Scholar 

  26. Konno T, Ross OA, Puschmann A, Dickson DW, Wszolek ZK (2016) Autosomal dominant Parkinson’s disease caused by SNCA duplications. Parkinsonism Relat Disord 22(Suppl 1):S1-6. https://doi.org/10.1016/j.parkreldis.2015.09.007

    Article  PubMed  Google Scholar 

  27. Kuo YM, Li Z, Jiao Y, Gaborit N, Pani AK, Orrison BM et al (2010) Extensive enteric nervous system abnormalities in mice transgenic for artificial chromosomes containing Parkinson disease-associated alpha-synuclein gene mutations precede central nervous system changes. Hum Mol Genet 19:1633–1650. https://doi.org/10.1093/hmg/ddq038

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Lau A, So RWL, Lau HHC, Sang JC, Ruiz-Riquelme A, Fleck SC et al (2020) α-Synuclein strains target distinct brain regions and cell types. Nat Neurosci 23:21–31. https://doi.org/10.1038/s41593-019-0541-x

    Article  CAS  PubMed  Google Scholar 

  29. Lavenir I, Passarella D, Masuda-Suzukake M, Curry A, Holton JL, Ghetti B et al (2019) Silver staining (Campbell-Switzer) of neuronal α-synuclein assemblies induced by multiple system atrophy and Parkinson’s disease brain extracts in transgenic mice. Acta Neuropathol Commun 7:148. https://doi.org/10.1186/s40478-019-0804-5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Li B, Ge P, Murray KA, Sheth P, Zhang M, Nair G et al (2018) Cryo-EM of full-length α-synuclein reveals fibril polymorphs with a common structural kernel. Nat Commun 9:3609. https://doi.org/10.1038/s41467-018-05971-2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Luk KC, Kehm V, Carroll J, Zhang B, O’Brien P, Trojanowski JQ et al (2012) Pathological α-synuclein transmission initiates Parkinson-like neurodegeneration in nontransgenic mice. Science 338:949–953. https://doi.org/10.1126/science.1227157

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. McKeith IG, Boeve BF, Dickson DW, Halliday G, Taylor JP, Weintraub D et al (2017) Diagnosis and management of dementia with Lewy bodies: fourth consensus report of the DLB consortium. Neurology 89:88–100. https://doi.org/10.1212/wnl.0000000000004058

    Article  PubMed  PubMed Central  Google Scholar 

  33. McKeith IG, Dickson DW, Lowe J, Emre M, O’Brien JT, Feldman H et al (2005) Diagnosis and management of dementia with Lewy bodies: third report of the DLB consortium. Neurology 65:1863–1872. https://doi.org/10.1212/01.wnl.0000187889.17253.b1

    Article  CAS  PubMed  Google Scholar 

  34. McLean CA, Cherny RA, Fraser FW, Fuller SJ, Smith MJ, Beyreuther K et al (1999) Soluble pool of Abeta amyloid as a determinant of severity of neurodegeneration in Alzheimer’s disease. Ann Neurol 46:860–866. https://doi.org/10.1002/1531-8249(199912)46:6%3c860::aid-ana8%3e3.0.co;2-m

    Article  CAS  PubMed  Google Scholar 

  35. Nelson PT, Jicha GA, Kryscio RJ, Abner EL, Schmitt FA, Cooper G et al (2010) Low sensitivity in clinical diagnoses of dementia with Lewy bodies. J Neurol 257:359–366. https://doi.org/10.1007/s00415-009-5324-y

    Article  PubMed  Google Scholar 

  36. Nizynski B, Dzwolak W, Nieznanski K (2017) Amyloidogenesis of Tau protein. Protein Sci 26:2126–2150. https://doi.org/10.1002/pro.3275

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Peng C, Gathagan RJ, Covell DJ, Medellin C, Stieber A, Robinson JL et al (2018) Cellular milieu imparts distinct pathological α-synuclein strains in α-synucleinopathies. Nature 557:558–563. https://doi.org/10.1038/s41586-018-0104-4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Peng Z, Parker AS, Peralta MDR, Ravikumar KM, Cox DL, Toney MD (2017) High tensile strength of engineered β-solenoid fibrils via sonication and pulling. Biophys J 113:1945–1955. https://doi.org/10.1016/j.bpj.2017.09.003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Polinski NK, Volpicelli-Daley LA, Sortwell CE, Luk KC, Cremades N, Gottler LM et al (2018) Best practices for generating and using alpha-synuclein pre-formed fibrils to model Parkinson’s disease in rodents. J Parkinsons Dis 8:303–322. https://doi.org/10.3233/jpd-171248

    Article  PubMed  PubMed Central  Google Scholar 

  40. Prusiner SB, Woerman AL, Mordes DA, Watts JC, Rampersaud R, Berry DB et al (2015) Evidence for α-synuclein prions causing multiple system atrophy in humans with parkinsonism. Proc Natl Acad Sci USA 112:E5308-5317. https://doi.org/10.1073/pnas.1514475112

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Rossi M, Candelise N, Baiardi S, Capellari S, Giannini G, Orrù CD et al (2020) Ultrasensitive RT-QuIC assay with high sensitivity and specificity for Lewy body-associated synucleinopathies. Acta Neuropathol 140:49–62. https://doi.org/10.1007/s00401-020-02160-8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Ruf VC, Shi S, Schmidt F, Weckbecker D, Nübling GS, Ködel U et al (2020) Potential sources of interference with the highly sensitive detection and quantification of alpha-synuclein seeds by qRT-QuIC. FEBS Open Bio 10:883–893. https://doi.org/10.1002/2211-5463.12844

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Sanderson JB, De S, Jiang H, Rovere M, Jin M, Zaccagnini L et al (2020) Analysis of α-synuclein species enriched from cerebral cortex of humans with sporadic dementia with Lewy bodies. Brain Commun 2:fcaa010. https://doi.org/10.1093/braincomms/fcaa010

    Article  PubMed  PubMed Central  Google Scholar 

  44. Schweighauser M, Shi Y, Tarutani A, Kametani F, Murzin AG, Ghetti B et al (2020) Structures of α-synuclein filaments from multiple system atrophy. Nature 585:464–469. https://doi.org/10.1038/s41586-020-2317-6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Shahnawaz M, Mukherjee A, Pritzkow S, Mendez N, Rabadia P, Liu X et al (2020) Discriminating α-synuclein strains in Parkinson’s disease and multiple system atrophy. Nature 578:273–277. https://doi.org/10.1038/s41586-020-1984-7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Smith JF, Knowles TP, Dobson CM, Macphee CE, Welland ME (2006) Characterization of the nanoscale properties of individual amyloid fibrils. Proc Natl Acad Sci USA 103:15806–15811. https://doi.org/10.1073/pnas.0604035103

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Strohäker T, Jung BC, Liou SH, Fernandez CO, Riedel D, Becker S et al (2019) Structural heterogeneity of α-synuclein fibrils amplified from patient brain extracts. Nat Commun 10:5535. https://doi.org/10.1038/s41467-019-13564-w

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Tarutani A, Arai T, Murayama S, Hisanaga SI, Hasegawa M (2018) Potent prion-like behaviors of pathogenic α-synuclein and evaluation of inactivation methods. Acta Neuropathol Commun 6:29. https://doi.org/10.1186/s40478-018-0532-2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Van der Perren A, Gelders G, Fenyi A, Bousset L, Brito F, Peelaerts W et al (2020) The structural differences between patient-derived α-synuclein strains dictate characteristics of Parkinson’s disease, multiple system atrophy and dementia with Lewy bodies. Acta Neuropathol 139:977–1000. https://doi.org/10.1007/s00401-020-02157-3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. van Steenoven I, Majbour NK, Vaikath NN, Berendse HW, van der Flier WM, van de Berg WDJ et al (2018) α-Synuclein species as potential cerebrospinal fluid biomarkers for dementia with lewy bodies. Mov Disord 33:1724–1733. https://doi.org/10.1002/mds.111

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Waters CH, Miller CA (1994) Autosomal dominant Lewy body parkinsonism in a four-generation family. Ann Neurol 35:59–64. https://doi.org/10.1002/ana.410350110

    Article  CAS  PubMed  Google Scholar 

  52. Xue WF, Hellewell AL, Gosal WS, Homans SW, Hewitt EW, Radford SE (2009) Fibril fragmentation enhances amyloid cytotoxicity. J Biol Chem 284:34272–34282. https://doi.org/10.1074/jbc.M109.049809

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

These studies have been supported by the National Institutes of Health grants P50 NS108675 and R01 NS064934. The authors acknowledge the generous contributions made by study participants and their families to further research into the causes of DLB and to help find treatments. The authors are indebted to the Duke Kathleen Price Bryan Brain Bank and Biorepository, a component of the Joseph and Kathleen Bryan Alzheimer’s Disease Research Center at Duke University. The authors thank Valentina Krendelchtchikova for her technical assistance, and Sara Miller and Ricardo Vancini for assistance with electron microscopy carried out with the Duke Electron Microscopy Service.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andrew B. West.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 1527 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sokratian, A., Ziaee, J., Kelly, K. et al. Heterogeneity in α-synuclein fibril activity correlates to disease phenotypes in Lewy body dementia. Acta Neuropathol 141, 547–564 (2021). https://doi.org/10.1007/s00401-021-02288-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00401-021-02288-1

Keywords

Navigation