Skip to main content

Advertisement

Log in

The enteric nervous system is a potential autoimmune target in multiple sclerosis

  • Original Paper
  • Published:
Acta Neuropathologica Aims and scope Submit manuscript

Abstract

Multiple sclerosis (MS) is a chronic autoimmune disease of the central nervous system (CNS) in young adults that has serious negative socioeconomic effects. In addition to symptoms caused by CNS pathology, the majority of MS patients frequently exhibit gastrointestinal dysfunction, which was previously either explained by the presence of spinal cord lesions or not directly linked to the autoimmune etiology of the disease. Here, we studied the enteric nervous system (ENS) in a B cell- and antibody-dependent mouse model of MS by immunohistochemistry and electron microscopy at different stages of the disease. ENS degeneration was evident prior to the development of CNS lesions and the onset of neurological deficits in mice. The pathology was antibody mediated and caused a significant decrease in gastrointestinal motility, which was associated with ENS gliosis and neuronal loss. We identified autoantibodies against four potential target antigens derived from enteric glia and/or neurons by immunoprecipitation and mass spectrometry. Antibodies against three of the target antigens were also present in the plasma of MS patients as confirmed by ELISA. The analysis of human colon resectates provided evidence of gliosis and ENS degeneration in MS patients compared to non-MS controls. For the first time, this study establishes a pathomechanistic link between the well-established autoimmune attack on the CNS and ENS pathology in MS, which might provide a paradigm shift in our current understanding of the immunopathogenesis of the disease with broad diagnostic and therapeutic implications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Bayliss WM, Starling EH (1899) The movements and innervation of the small intestine. J Physiol 24:99–143

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Bolstad BM, Irizarry RA, Astrand M, Speed TP (2003) A comparison of normalization methods for high density oligonucleotide array data based on variance and bias. Bioinformatics 19:185–193

    Article  CAS  PubMed  Google Scholar 

  3. Cua DJ, Hinton DR, Kirkman L, Stohlman SA (1995) Macrophages regulate induction of delayed-type hypersensitivity and experimental allergic encephalomyelitis in SJL mice. Eur J Immunol 25:2318–2324

    Article  CAS  PubMed  Google Scholar 

  4. Furness JB (2008) The enteric nervous system: normal functions and enteric neuropathies. Neurogastroenterol Motil 20(Suppl 1):32–38. doi:10.1111/j.1365-2982.2008.01094.x

    Article  PubMed  Google Scholar 

  5. Furness JB, Callaghan BP, Rivera LR, Cho HJ (2014) The enteric nervous system and gastrointestinal innervation: integrated local and central control. Adv Exp Med Biol 817:39–71. doi:10.1007/978-1-4939-0897-4_3

    Article  PubMed  Google Scholar 

  6. Grubišić V, Parpura V (2015) The second brain in autism spectrum disorder: could connexin 43 expressed in enteric glial cells play a role? Front Cell Neurosci 9:242. doi:10.3389/fncel.2015.00242

    PubMed  PubMed Central  Google Scholar 

  7. Hundgeburth LC, Wunsch M, Rovituso D, Recks MS, Addicks K, Lehmann PV, Kuerten S (2013) The complement system contributes to the pathology of experimental autoimmune encephalomyelitis by triggering demyelination and modifying the antigen-specific T and B cell response. Clin Immunol 146:155–164. doi:10.1016/j.clim.2012.12.007

    Article  CAS  PubMed  Google Scholar 

  8. Kuerten S, Javeri S, Tary-Lehmann M, Lehmann PV, Angelov DN (2008) Fundamental differences in the dynamics of CNS lesion development and composition in MP4- and MOG peptide 35-55-induced experimental autoimmune encephalomyelitis. Clin Immunol 129:256–267. doi:10.1016/j.clim.2008.07.016

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Kuerten S, Kostova-Bales DA, Frenzel LP, Tigno JT, Tary-Lehmann M, Angelov DN, Lehmann PV (2007) MP4- and MOG:35-55-induced EAE in C57BL/6 mice differentially targets brain, spinal cord and cerebellum. J Neuroimmunol 189:31–40

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Kuerten S, Lehmann PV (2011) The immune pathogenesis of experimental autoimmune encephalomyelitis: lessons learned for multiple sclerosis? J Interferon Cytokine Res 31:907–916. doi:10.1089/jir.2011.0072

    Article  CAS  PubMed  Google Scholar 

  11. Kuerten S, Lichtenegger FS, Faas S, Angelov DN, Tary-Lehmann M, Lehmann PV (2006) MBP-PLP fusion protein-induced EAE in C57BL/6 mice. J Neuroimmunol 177:99–111

    Article  CAS  PubMed  Google Scholar 

  12. Kuerten S, Pauly R, Rottlaender A, Rodi M, Gruppe TL, Addicks K, Tary-Lehmann M, Lehmann PV (2011) Myelin-reactive antibodies mediate the pathology of MBP-PLP fusion protein MP4-induced EAE. Clin Immunol 140:54–62. doi:10.1016/j.clim.2011.03.009

    Article  CAS  PubMed  Google Scholar 

  13. Kuerten S, Schickel A, Kerkloh C, Recks MS, Addicks K, Ruddle NH, Lehmann PV (2012) Tertiary lymphoid organ development coincides with determinant spreading of the myelin-specific T cell response. Acta Neuropathol 124:861–873. doi:10.1007/s00401-012-1023-3

    Article  CAS  PubMed  Google Scholar 

  14. Lehmann PV, Forsthuber T, Miller A, Sercarz EE (1992) Spreading of T-cell autoimmunity to cryptic determinants of an autoantigen. Nature 358:155–157

    Article  CAS  PubMed  Google Scholar 

  15. Lehmann PV, Sercarz EE, Forsthuber T, Dayan CM, Gammon G (1993) Determinant spreading and the dynamics of the autoimmune T-cell repertoire. Immunol Today 14:203–208

    Article  CAS  PubMed  Google Scholar 

  16. Lehmann PV, Targoni OS, Forsthuber TG (1998) Shifting T-cell activation thresholds in autoimmunity and determinant spreading. Immunol Rev 164:53–61

    Article  CAS  PubMed  Google Scholar 

  17. Levinthal DJ, Rahman A, Nusrat S, O’Leary M, Heyman R, Bielefeldt K (2013) Adding to the burden: gastrointestinal symptoms and syndromes in multiple sclerosis. Mult Scler Int 2013:319201. doi:10.1155/2013/319201

    PubMed  PubMed Central  Google Scholar 

  18. Pellegrini C, Colucci R, Antonioli L, Barocelli E, Ballabeni V, Bernardini N, Blandizzi C, de Jonge WJ, Fornai M (2016) Intestinal dysfunction in Parkinson’s disease: lessons learned from translational studies and experimental models. Neurogastroenterol Motil 28:1781–1791. doi:10.1111/nmo.12933

    Article  CAS  PubMed  Google Scholar 

  19. Prinz J, Karacivi A, Stormanns ER, Recks MS, Kuerten S (2015) Time-dependent progression of demyelination and axonal pathology in MP4-induced experimental autoimmune encephalomyelitis. PLoS ONE 10:e0144847. doi:10.1371/journal.pone.0144847

    Article  PubMed  PubMed Central  Google Scholar 

  20. Rao M, Gershon MD (2016) The bowel and beyond: the enteric nervous system in neurological disorders. Nat Rev Gestroenterol Hepatol 13:517–528. doi:10.1038/nrgastro.2016.107

    Article  CAS  Google Scholar 

  21. Rao P, Segal BM (2004) Experimental autoimmune encephalomyelitis. Methods Mol Med 102:363–375

    CAS  PubMed  Google Scholar 

  22. Rao M, Nelms BD, Dong L, Salinas-Rios V, Rutlin M, Gershon MD, Corfas G (2015) Enteric glia express proteolipid protein 1 and are a transcriptionally unique population of glia in the mammalian nervous system. Glia 63:2040–2057

    Article  Google Scholar 

  23. Recks MS, Stormanns ER, Bader J, Arnhold S, Addicks K, Kuerten S (2013) Early axonal damage and progressive myelin pathology define the kinetics of CNS histopathology in a mouse model of multiple sclerosis. Clin Immunol 149:32–45. doi:10.1016/j.clim.2013.06.004

    Article  CAS  PubMed  Google Scholar 

  24. Ritchie ME, Phipson B, Wu D, Hu Y, Law CW, Shi W, Smyth GK (2015) limma powers differential expression analyses for RNA-sequencing and microarray studies. Nucleic Acids Res 43:e47. doi:10.1093/nar/gkv007

    Article  PubMed  PubMed Central  Google Scholar 

  25. Rühl A (2005) Glia cells in the gut. Neurogastroenterol Motil 17:777–790

    Article  PubMed  Google Scholar 

  26. Semar S, Klotz M, Letiembre M, Van Ginneken C, Braun A, Jost V, Bischof M, Lammers WJ, Liu Y, Fassbender K, Wyss-Coray T, Kirchhoff F, Schäfer KH (2013) Changes of the enteric nervous system in amyloid-β protein precursor transgenic mice correlate with disease progression. J Alzheimers Dis 36:7–20. doi:10.3233/JAD-120511

    CAS  PubMed  Google Scholar 

  27. Targoni OS, Baus J, Hofstetter HH, Hesse MD, Karulin AY, Boehm BO, Forsthuber TG, Lehmann PV (2001) Frequencies of neuroantigen-specific T cells in the central nervous system versus the immune periphery during the course of experimental allergic encephalomyelitis. J Immunol 166:4757–4764

    Article  CAS  PubMed  Google Scholar 

  28. Targoni OS, Lehmann PV (1998) Endogenous myelin basic protein inactivates the high avidity T cell repertoire. J Exp Med 187:2055–2063

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Tuohy VK, Kinkel RP (2000) Epitope spreading: a mechanism for progression of autoimmune disease. Arch Immunol Ther Exp 48:347–351

    CAS  Google Scholar 

  30. Tuohy VK, Yu M, Yin L, Kawczak JA, Johnson JM, Mathisen PM, Weinstock-Guttman B, Kinkel RP (1998) The epitope spreading cascade during progression of experimental autoimmune encephalomyelitis and multiple sclerosis. Immunol Rev 164:93–100

    Article  CAS  PubMed  Google Scholar 

  31. Tuohy VK, Yu M, Yin L, Kawczak JA, Kinkel PR (1999) Regression and spreading of self-recognition during the development of autoimmune demyelinating disease. J Autoimmun 13:11–20

    Article  CAS  PubMed  Google Scholar 

  32. Vanderlugt CL, Miller SD (2002) Epitope spreading in immune-mediated diseases: implications for immunotherapy. Nat Rev Immunol 2:85–95

    Article  CAS  PubMed  Google Scholar 

  33. Vukmanović S, Mostarica-Stojković M, Zalud I, Ramić Z, Lukić ML (1990) Analysis of T cell subsets after induction of experimental autoimmune encephalomyelitis in susceptible and resistant strains of rats. J Neuroimmunol 27:63–69

    Article  PubMed  Google Scholar 

  34. Wiesel PH, Norton C, Glickman S, Kamm MA (2001) Pathophysiology and management of bowel dysfunction in multiple sclerosis. Eur J Gastroenterol Hepatol 13:441–448

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We are grateful to Alla Ganscher, Eleonora Maier, Brigitte Treffny, Nicole Wagner, Michael Rodi and Andrea Schampel for technical support und Michael Christof for help with the figure design. We thank Logopharm GmbH for target antigen identification. We would like to thank Bertal H. Aktas for providing the elF3D plasmid.

Funding

Stefanie Kuerten was supported by the Deutsche Forschungsgemeinschaft (DFG; Grants KU2760/2-1 and KU2760/4-1). Claus-Jürgen Scholz was supported by the Interdisziplinäres Zentrum für Klinische Forschung (IZKF; Grant Z-6).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stefanie Kuerten.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest with respect to the study and data presented in this paper.

Ethical standards

The institutional review boards of the Universities of Würzburg and Erlangen-Nürnberg approved the study of human gut resectates (Files 81/14 and 2550). All animal experiments were approved by the ‘Regierung von Unterfranken’ (Files 114/13 and 91/14).

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 1179 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wunsch, M., Jabari, S., Voussen, B. et al. The enteric nervous system is a potential autoimmune target in multiple sclerosis. Acta Neuropathol 134, 281–295 (2017). https://doi.org/10.1007/s00401-017-1742-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00401-017-1742-6

Keywords

Navigation