Skip to main content

Advertisement

Log in

Peripheral monocytes are functionally altered and invade the CNS in ALS patients

  • Original Paper
  • Published:
Acta Neuropathologica Aims and scope Submit manuscript

Abstract

Amyotrophic lateral sclerosis (ALS) is a devastating progressive neurodegenerative disease affecting primarily the upper and lower motor neurons. A common feature of all ALS cases is a well-characterized neuroinflammatory reaction within the central nervous system (CNS). However, much less is known about the role of the peripheral immune system and its interplay with CNS resident immune cells in motor neuron degeneration. Here, we characterized peripheral monocytes in both temporal and spatial dimensions of ALS pathogenesis. We found the circulating monocytes to be deregulated in ALS regarding subtype constitution, function and gene expression. Moreover, we show that CNS infiltration of peripheral monocytes correlates with improved motor neuron survival in a genetic ALS mouse model. Furthermore, application of human immunoglobulins or fusion proteins containing only the human Fc, but not the Fab antibody fragment, increased CNS invasion of peripheral monocytes and delayed the disease onset. Our results underline the importance of peripheral monocytes in ALS pathogenesis and are in agreement with a protective role of monocytes in the early phase of the disease. The possibility to boost this beneficial function of peripheral monocytes by application of human immunoglobulins should be evaluated in clinical trials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Ahmed Z, Shaw G, Sharma VP, Yang C, McGowan E, Dickson DW (2007) Actin-binding proteins coronin-1a and IBA-1 are effective microglial markers for immunohistochemistry. J Histochem Cytochem 55:687–700. doi:10.1369/jhc.6A7156.2007

    Article  CAS  PubMed  Google Scholar 

  2. Ajami B, Bennett JL, Krieger C, Tetzlaff W, Rossi FMV (2007) Local self-renewal can sustain CNS microglia maintenance and function throughout adult life. Nat Neurosci 10: 1538–1543. http://www.nature.com/neuro/journal/v10/n12/suppinfo/nn2014_S1.html. Accessed 19 Nov 2015

  3. Appel SH, Zhao W, Beers DR, Henkel JS (2011) The microglial-motoneuron dialogue in ALS. Acta Myologica 30:4–8

    CAS  PubMed  PubMed Central  Google Scholar 

  4. Beers DR, Henkel JS, Zhao W, Wang J, Appel SH (2008) CD4+ T cells support glial neuroprotection, slow disease progression, and modify glial morphology in an animal model of inherited ALS. Proc Natl Acad Sci USA 105:15558–15563. doi:10.1073/pnas.0807419105

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Boillée S, Yamanaka K, Lobsiger CS, Copeland NG, Jenkins NA, Kassiotis G et al (2006) Onset and progression in inherited ALS determined by motor neurons and microglia. Science 312:1389–1392. doi:10.1126/science.1123511

    Article  PubMed  Google Scholar 

  6. Bradley WG (2009) Updates on amyotrophic lateral sclerosis: improving patient care. Ann Neurol 65:S1–S2. doi:10.1002/ana.21546

    Article  PubMed  Google Scholar 

  7. Brettschneider J, Libon DJ, Toledo JB, Xie SX, McCluskey L, Elman L et al (2012) Microglial activation and TDP-43 pathology correlate with executive dysfunction in amyotrophic lateral sclerosis. Acta Neuropathol 123:395–407. doi:10.1007/s00401-011-0932-x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Brettschneider J, Toledo JB, Van Deerlin VM, Elman L, McCluskey L, Lee VMY et al (2012) Microglial activation correlates with disease progression and upper motor neuron clinical symptoms in amyotrophic lateral sclerosis. PLoS One 7:e39216. doi:10.1371/journal.pone.0039216

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Bruhns P (2012) Properties of mouse and human IgG receptors and their contribution to disease models. Blood 119(24):5640–5649. doi:10.1182/blood-2012-01-380121

    Article  CAS  PubMed  Google Scholar 

  10. Butovsky O, Siddiqui S, Gabriely G, Lanser AJ, Dake B, Murugaiyan G et al (2012) Modulating inflammatory monocytes with a unique microRNA gene signature ameliorates murine ALS. J Clin Invest 122:3063–3087. doi:10.1172/JCI62636

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Butovsky O, Jedrychowski MP, Moore CS, Cialic R, Lanser AJ, Gabriely G et al (2014) Identification of a unique TGF-β dependent molecular and functional signature in microglia. Nat Neurosci 17:131–143. doi:10.1038/nn.3599

    Article  CAS  PubMed  Google Scholar 

  12. Butovsky O, Jedrychowski MP, Cialic R, Krasemann S, Murugaiyan G, Fanek Z et al (2015) Targeting miR-155 restores abnormal microglia and attenuates disease in SOD1 mice. Ann Neurol 77:75–99. doi:10.1002/ana.24304

    Article  CAS  PubMed  Google Scholar 

  13. Chiu IM, Phatnani H, Kuligowski M, Tapia JC, Carrasco MA, Zhang M et al (2009) Activation of innate and humoral immunity in the peripheral nervous system of ALS transgenic mice. Proc Natl Acad Sci USA 106:20960–20965. doi:10.1073/pnas.0911405106

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Chiu IM, Morimoto ETA, Goodarzi H, Liao JT, O’Keeffe S, Phatnani HP et al (2013) A Neurodegeneration-specific gene-expression signature of acutely isolated microglia from an amyotrophic lateral sclerosis mouse model. Cell Reports 4:385–401. doi:10.1016/j.celrep.2013.06.018

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Clay CC, Rodrigues DS, Ho YS, Fallert BA, Janatpour K, Reinhart TA et al (2007) Neuroinvasion of fluorescein-positive monocytes in acute simian immunodeficiency virus infection. J Virol 81:12040–12048. doi:10.1128/jvi.00133-07

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Cleveland DW, Rothstein JD (2001) From charcot to lou gehrig: deciphering selective motor neuron death in als. Nat Rev Neurosci 2:806–819

    Article  CAS  PubMed  Google Scholar 

  17. Cros J, Cagnard N, Woollard K, Patey N, Zhang SY, Senechal B et al (2010) Human CD14dim monocytes patrol and sense nucleic acids and viruses via TLR7 and TLR8 receptors. Immunity 33:375–386. doi:10.1016/j.immuni.2010.08.012

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. D’Mello C, Le T, Swain MG (2009) Cerebral microglia recruit monocytes into the brain in response to tumor necrosis factorα signaling during peripheral organ inflammation. J Neurosci 29:2089–2102. doi:10.1523/jneurosci.3567-08.2009

    Article  PubMed  Google Scholar 

  19. Das A, Sinha M, Datta S, Abas M, Chaffee S, Sen CK et al. (2015) Monocyte and macrophage plasticity in tissue repair and regeneration. Am J Pathol. 185(10):2596–2606. doi: 10.1016/j.ajpath.2015.06.001

    Article  CAS  PubMed  Google Scholar 

  20. Davies LC, Jenkins SJ, Allen JE, Taylor PR (2013) Tissue-resident macrophages. Nat Immunol 14:986–995. doi:10.1038/ni.2705

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. DeJesus-Hernandez M, Mackenzie IR, Boeve BF, Boxer AL, Baker M, Rutherford NJ et al (2011) Expanded GGGGCC hexanucleotide repeat in non-coding region of C9ORF72 causes chromosome 9p-linked frontotemporal dementia and amyotrophic lateral sclerosis. Neuron 72:245–256. doi:10.1016/j.neuron.2011.09.011

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Delneste Y, Charbonnier P, Herbault N, Magistrelli G, Caron G, Bonnefoy JY et al (2003) Interferon-γ switches monocyte differentiation from dendritic cells to macrophages. Blood 101:143–150. doi:10.1182/blood-2002-04-1164

    Article  CAS  PubMed  Google Scholar 

  23. Freischmidt A, Müller K, Zondler L, Weydt P, Mayer B, von Arnim CAF et al (2015) Serum microRNAs in sporadic amyotrophic lateral sclerosis. Neurobiol Aging 36(9):2660.e15–20. doi: 10.1016/j.neurobiolaging.2015.06.003

    Article  PubMed  Google Scholar 

  24. Freischmidt A, Müller K, Zondler L, Weydt P, Volk AE, Božič AL et al (2014) Serum microRNAs in patients with genetic amyotrophic lateral sclerosis and pre-manifest mutation carriers. Brain pp 2938–2950. doi:10.1093/brain/awu249

  25. Gao L, Brenner D, Llorens-Bobadilla E, Saiz-Castro G, Frank T, Wieghofer P et al (2015) Infiltration of circulating myeloid cells through CD95L contributes to neurodegeneration in mice. J Exp Med 212:469–480. doi:10.1084/jem.20132423

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Ginhoux F, Jung S (2014) Monocytes and macrophages: developmental pathways and tissue homeostasis. Nat Rev Immunol 14:392–404. doi:10.1038/nri3671

    Article  CAS  PubMed  Google Scholar 

  27. Graber DJ, Hickey WF, Harris BT (2010) Progressive changes in microglia and macrophages in spinal cord and peripheral nerve in the transgenic rat model of amyotrophic lateral sclerosis. J Neuroinflammation 7:8. doi:10.1186/1742-2094-7-8

    Article  PubMed  PubMed Central  Google Scholar 

  28. Grozdanov V, Bliederhaeuser C, Ruf WP, Roth V, Fundel-Clemens K, Zondler L et al (2014) Inflammatory dysregulation of blood monocytes in Parkinson’s disease patients. Acta Neuropathol 128:651–663. doi:10.1007/s00401-014-1345-4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Gruzman A, Wood WL, Alpert E, Prasad MD, Miller RG, Rothstein JD et al (2007) Common molecular signature in SOD1 for both sporadic and familial amyotrophic lateral sclerosis. Proc Natl Acad Sci USA 104:12524–12529. doi:10.1073/pnas.0705044104

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Gurney M, Pu H, Chiu A, Dal Canto M, Polchow C, Alexander D et al (1994) Motor neuron degeneration in mice that express a human Cu, Zn superoxide dismutase mutation. Science 264:1772–1775. doi:10.1126/science.8209258

    Article  CAS  PubMed  Google Scholar 

  31. Henkel JS, Engelhardt JI, Siklós L, Simpson EP, Kim SH, Pan T et al (2004) Presence of dendritic cells, MCP-1, and activated microglia/macrophages in amyotrophic lateral sclerosis spinal cord tissue. Ann Neurol 55:221–235. doi:10.1002/ana.10805

    Article  CAS  PubMed  Google Scholar 

  32. Hohsfield LA, Humpel C (2015) Migration of blood cells to β-amyloid plaques in Alzheimer’s disease. Exp Gerontol 65:8–15. doi:10.1016/j.exger.2015.03.002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Hübers A, Marroquin N, Schmoll B, Vielhaber S, Just M, Mayer B et al (2014) Polymerase chain reaction and Southern blot-based analysis of the C9orf72 hexanucleotide repeat in different motor neuron diseases. Neurobiol Aging 35:1214.e1211–1214.e1216. doi:10.1016/j.neurobiolaging.2013.11.034

    Article  Google Scholar 

  34. Jefferies HBJ, Cooke FT, Jat P, Boucheron C, Koizumi T, Hayakawa M et al (2008) A selective PIKfyve inhibitor blocks PtdIns(3,5)P(2) production and disrupts endomembrane transport and retroviral budding. EMBO Rep 9:164–170. doi:10.1038/sj.embor.7401155

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Jones DA, Abbassi O, McIntire LV, McEver RP, Smith CW (1993) P-selectin mediates neutrophil rolling on histamine-stimulated endothelial cells. Biophys J 65:1560–1569. doi:10.1016/s0006-3495(93)81195-0

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Kawamata T, Akiyama H, Yamada T, McGeer PL (1992) Immunologic reactions in amyotrophic lateral sclerosis brain and spinal cord tissue. Am J Pathol 140:691–707

    CAS  PubMed  PubMed Central  Google Scholar 

  37. Kim HJ, Kim NC, Wang YD, Scarborough EA, Moore J, Diaz Z et al (2013) Prion-like domain mutations in hnRNPs cause multisystem proteinopathy and ALS. Nature 495:467–473. doi:10.1038/nature11922

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Klussmann S, Martin-Villalba A (2005) Molecular targets in spinal cord injury. J Mol Med 83:657–671. doi:10.1007/s00109-005-0663-3

    Article  CAS  PubMed  Google Scholar 

  39. Korn EL, Troendle JF, McShane LM, Simon R (2004) Controlling the number of false discoveries: application to high-dimensional genomic data. J Stat Plan Inference 124:379–398. doi:10.1016/S0378-3758(03)00211-8

    Article  Google Scholar 

  40. Kreutzberg GW (1996) Microglia: a sensor for pathological events in the CNS. Trends Neurosci 19:312–318. doi:10.1016/0166-2236(96)10049-7

    Article  CAS  PubMed  Google Scholar 

  41. Kuhle J, Lindberg RLP, Regeniter A, Mehling M, Steck AJ, Kappos L et al (2009) Increased levels of inflammatory chemokines in amyotrophic lateral sclerosis. Eur J Neurol 16:771–774. doi:10.1111/j.1468-1331.2009.02560.x

    Article  CAS  PubMed  Google Scholar 

  42. Lehnert S, Costa J, de Carvalho M, Kirby J, Kuzma-Kozakiewicz M, Morelli C et al (2014) Multicentre quality control evaluation of different biomarker candidates for amyotrophic lateral sclerosis. Amyotroph Lateral Scler Frontotemporal Degener 15:344–350. doi:10.3109/21678421.2014.884592

    Article  PubMed  Google Scholar 

  43. Liao B, Zhao W, Beers DR, Henkel JS, Appel SH (2012) Transformation from a neuroprotective to a neurotoxic microglial phenotype in a mouse model of ALS. Exp Neurol 237:147–152. doi:10.1016/j.expneurol.2012.06.011

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. 44. Lincecum JM, Vieira FG, Wang MZ, Thompson K, De Zutter GS, Kidd J et al. (2010) From transcriptome analysis to therapeutic anti-CD40L treatment in the SOD1 model of amyotrophic lateral sclerosis. Nat Genet 42: 392–399. http://www.nature.com/ng/journal/v42/n5/suppinfo/ng.557_S1.html

  45. Mantovani S, Garbelli S, Pasini A, Alimonti D, Perotti C, Melazzini M et al (2009) Immune system alterations in sporadic amyotrophic lateral sclerosis patients suggest an ongoing neuroinflammatory process. J Neuroimmunol 210:73–79. doi:10.1016/j.jneuroim.2009.02.012

    Article  CAS  PubMed  Google Scholar 

  46. Mildner A, Schmidt H, Nitsche M, Merkler D, Hanisch UK, Mack M et al. (2007) Microglia in the adult brain arise from Ly-6ChiCCR2 + monocytes only under defined host conditions. Nat Neurosci 10:1544–1553. http://www.nature.com/neuro/journal/v10/n12/suppinfo/nn2015_S1.html

  47. Mitchell AJ, Roediger B, Weninger W (2014) Monocyte homeostasis and the plasticity of inflammatory monocytes. Cell Immunol 291:22–31. doi:10.1016/j.cellimm.2014.05.010

    Article  CAS  PubMed  Google Scholar 

  48. Murdock BJ, Bender DE, Segal BM, Feldman EL (2015) The dual roles of immunity in ALS: injury overrides protection. Neurobiol Disease 77:1–12. doi:10.1016/j.nbd.2015.02.017

    Article  CAS  Google Scholar 

  49. Nagelkerke SQ, Kuijpers TW (2014) Immunomodulation by IVIg and the role of Fc-gamma receptors: classic mechanisms of action after all? Front Immunol 5:674. doi:10.3389/fimmu.2014.00674

    PubMed  Google Scholar 

  50. Nimmerjahn F, Ravetch JV (2008) Fc[gamma] receptors as regulators of immune responses. Nat Rev Immunol 8:34–47

    Article  CAS  PubMed  Google Scholar 

  51. Nourshargh S, Alon R (2014) Leukocyte migration into inflamed tissues. Immunity 41:694–707. doi:10.1016/j.immuni.2014.10.008

    Article  CAS  PubMed  Google Scholar 

  52. O’Neill ASG, van den Berg TK, Mullen GED (2013) Sialoadhesin: a macrophage-restricted marker of immunoregulation and inflammation. Immunology 138:198–207. doi:10.1111/imm.12042

    Article  PubMed  PubMed Central  Google Scholar 

  53. Overdijk MB, Verploegen S, Ortiz Buijsse A, Vink T, Leusen JHW, Bleeker WK et al (2012) Crosstalk between human IgG isotypes and murine effector cells. J Immunol 189:3430–3438. doi:10.4049/jimmunol.1200356

    Article  CAS  PubMed  Google Scholar 

  54. Pfaffl MW (2001) A new mathematical model for relative quantification in real-time RT–PCR. Nucleic Acids Res 29:e45

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Randolph GJ, Jakubzick C, Qu C (2008) Antigen presentation by monocytes and monocyte-derived cells. Curr Opin Immunol 20:52–60. doi:10.1016/j.coi.2007.10.010

    Article  CAS  PubMed  Google Scholar 

  56. Rempel H, Calosing C, Sun B, Pulliam L (2008) Sialoadhesin expressed on IFN-induced monocytes binds HIV-1 and enhances infectivity. PLoS One 3:e1967. doi:10.1371/journal.pone.0001967

    Article  PubMed  PubMed Central  Google Scholar 

  57. Renton AE, Majounie E, Waite A, Simón-Sánchez J, Rollinson S, Gibbs JR et al (2011) A hexanucleotide repeat expansion in C9ORF72 is the cause of chromosome 9p21-linked ALS-FTD. Neuron 72:257–268. doi:10.1016/j.neuron.2011.09.010

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Robberecht W, Philips T (2013) The changing scene of amyotrophic lateral sclerosis. Nat Rev Neurosci 14: 248–264. http://www.nature.com/nrn/journal/v14/n4/suppinfo/nrn3430_S1.html

  59. Ryberg H, An J, Darko S, Lustgarten JL, Jaffa M, Gopalakrishnan V et al (2010) Discovery and verification of amyotrophic lateral sclerosis biomarkers by proteomics. Muscle Nerve 42:104–111. doi:10.1002/mus.21683

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Shi C, Pamer EG (2011) Monocyte recruitment during infection and inflammation. Nat Rev Immunol 11:762–774. doi:10.1038/nri3070

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Steiniger B, Barth P, Herbst B, Hartnell A, Crocker PR (1997) The species-specific structure of microanatomical compartments in the human spleen: strongly sialoadhesin-positive macrophages occur in the perifollicular zone, but not in the marginal zone. Immunology 92:307–316

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Tanaka M, Krutzik SR, Sieling PA, Lee D, Rea TH, Modlin RL (2009) Activation of FcγR1 on monocytes triggers differentiation into immature dendritic cells that induce autoreactive T cell responses. J Immunol (Baltimore, Md : 1950) 183:2349–2355. doi:10.4049/jimmunol.0801683

    Article  CAS  Google Scholar 

  63. Turner MR, Cagnin A, Turkheimer FE, Miller CCJ, Shaw CE, Brooks DJ et al (2004) Evidence of widespread cerebral microglial activation in amyotrophic lateral sclerosis: an [11C](R)-PK11195 positron emission tomography study. Neurobiol Disease 15:601–609. doi:10.1016/j.nbd.2003.12.012

    Article  CAS  Google Scholar 

  64. Weydt P, Hong SY, Kliot M, Möller T (2003) Assessing disease onset and progression in the SOD1 mouse model of ALS. NeuroReport 14:1051–1054. doi:10.1097/01.wnr.0000073685.00308.89

    Article  PubMed  Google Scholar 

  65. Wiesner D, Merdian I, Lewerenz J, Ludolph AC, Dupuis L, Witting A (2013) Fumaric Acid esters stimulate astrocytic VEGF expression through HIF-1α and Nrf2. PLoS One 8:e76670. doi:10.1371/journal.pone.0076670

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Witting A, Möller T (2011) Microglia cell culture: a primer for the novice. In Vitro Neurotoxicology. Humana Press, New York, pp 49–66

    Chapter  Google Scholar 

  67. Yamasaki R, Lu H, Butovsky O, Ohno N, Rietsch AM, Cialic R et al (2014) Differential roles of microglia and monocytes in the inflamed central nervous system. J Exp Med 211:1533–1549. doi:10.1084/jem.20132477

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. York MR, Nagai T, Mangini AJ, Lemaire R, van Seventer JM, Lafyatis R (2007) A macrophage marker, siglec-1, is increased on circulating monocytes in patients with systemic sclerosis and induced by type i interferons and toll-like receptor agonists. Arthritis Rheum 56:1010–1020. doi:10.1002/art.22382

    Article  CAS  PubMed  Google Scholar 

  69. Ziegler-Heitbrock L (2014) Monocyte subsets in man and other species. Cell Immunol 289:135–139. doi:10.1016/j.cellimm.2014.03.019

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We thank all blood donors, healthy control probands, as well as ALS patients and pre-symptomatic mutation carriers for participation in this study. We thank all physicians at the neurologic university clinic Ulm for recruiting and taking care of the patients who have participated in this study. We thank Antje Knehr for organizing the collection of blood from members of ALS families and we thank Birgit Linkus, Tanja Wipp, Diana Wiesner, Nadine Todt, Elena Jasovskaja, Johannes Hanselmann, and Eva Barth for technical assistance. This research was supported by the Thierry Latran Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jochen H. Weishaupt.

Ethics declarations

Funding

This work has been funded by the Thierry Latran Foundation, Grant Number: FTLAAP213/Weishaupt/innatetarget.

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

All procedures performed in studies involving human participants were in accordance with the ethical standards of the institutional research committee (Ethics Committee of Ulm University) and with the 1964 Helsinki Declaration and its later amendments or comparable ethical standards. Informed written consent was obtained from all individual participants included in the study prior to inclusion. All applicable international, national, and institutional guidelines for the care and use of animals were followed. All procedures performed in studies involving animals were in accordance with the ethical standards of the institution or practice at which the studies were conducted. All animal procedures were approved by the Regierungspräsidium Baden-Württemberg, Tübingen, Germany (No. 1090), and conducted according to the guidelines of the German Tierschutzgesetz.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 1713 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zondler, L., Müller, K., Khalaji, S. et al. Peripheral monocytes are functionally altered and invade the CNS in ALS patients. Acta Neuropathol 132, 391–411 (2016). https://doi.org/10.1007/s00401-016-1548-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00401-016-1548-y

Keywords

Navigation