Skip to main content

Advertisement

Log in

Molecular targets in spinal cord injury

  • Review
  • Published:
Journal of Molecular Medicine Aims and scope Submit manuscript

Abstract

The spinal cord can be compared to a highway connecting the brain with the different body levels lying underneath, with the axons being the ultimate carriers of the electrical impulse. After spinal cord injury (SCI), many cells are lost because of the injury. To reconstitute function, damaged axons from surviving neurons have to grow through the lesion site to their initial targets. However, the territory they have to traverse has changed: the highway is full of inhibitory signals (myelin and scar components); the pavement itself has become bumpy (demyelination); and specialized cells are recruited to clear the way (inflammatory cells). Thus, actual strategies to treat spinal injuries aim at providing a permissive environment for regenerating axons and boosting the endogenous potential of axons to regenerate while limiting progression of secondary damage. Here we review some of the strategies currently under consideration to treat spinal injuries.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Abbreviations

SCI:

Spinal cord injury

ATP:

Adenosine triphosphate

NMDA:

N-methyl-d-aspartate

AMPA:

α-Amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid

NASCIS:

National Acute Spinal Cord Injury Study

NO:

Nitric oxide

NOS:

Nitric oxide synthase

4-AP:

4-Aminopyridine

MP:

Methylprednisolone

MMP:

Matrix metalloprotease

ICAM-1:

Intercellular adhesion molecule-1

VCAM-1:

Vascular cell adhesion molecule-1

TNF:

Tumor necrosis factor

IL:

Interleukin

PG:

Prostaglandin

COX:

Cyclooxygenase

MBP:

Myelin basic protein

zVAD-fmk:

N-Benzyloxycarbonyl-Val-Ala-Asp-fluoromethylketone

p75NTR:

p75 neurotrophin receptor

CD95L:

CD95 ligand

BBB:

Blood–brain barrier

CSPGs:

Chondroitin sulfate proteoglycans

OMgp:

Oligodendrocyte myelin glycoprotein

MAG:

Myelin-associated glycoprotein

NgR:

Nogo receptor

ROCK:

RhoA-associated kinase

OECs:

Olfactory ensheathing cells

OPCs:

Oligodendrocyte precursor cells

MS:

Multiple sclerosis

DRG:

Dorsal root ganglion

cAMP:

Cyclic adenosine monophosphate

PKA:

Protein kinase-A

BDNF:

Brain-derived neurotrophic factor

References

  1. Wang X, Arcuino G, Takano T, Lin J, Peng WG, Wan P, Li P, Xu Q, Liu QS, Goldman SA, Nedergaard M (2004) P2X7 receptor inhibition improves recovery after spinal cord injury. Nat Med 10(8):821–827

    Article  PubMed  Google Scholar 

  2. Cassada DC, Tribble CG, Young JS, Gangemi JJ, Gohari AR, Butler PD, Rieger JM, Kron IL, Linden J, Kern JA (2002) Adenosine A2A analogue improves neurologic outcome after spinal cord trauma in the rabbit. J Trauma 53(2):225–229

    PubMed  Google Scholar 

  3. Rosenberg LJ, Teng YD, Wrathall JR (1999) Effects of the sodium channel blocker tetrodotoxin on acute white matter pathology after experimental contusive spinal cord injury. J Neurosci 19(14):6122–6133

    PubMed  Google Scholar 

  4. Schwartz G, Fehlings MG (2001) Evaluation of the neuroprotective effects of sodium channel blockers after spinal cord injury: improved behavioral and neuroanatomical recovery with riluzole. J Neurosurg Spine 94(2):245–256

    Google Scholar 

  5. Hulsebosch CE (2002) Recent advances in pathophysiology and treatment of spinal cord injury. Adv Physiol Educ 26(1–4):238–255

    PubMed  Google Scholar 

  6. Feldblum S, Arnaud S, Simon M, Rabin O, D’Arbigny P (2000) Efficacy of a new neuroprotective agent, gacyclidine, in a model of rat spinal cord injury. J Neurotrauma 17(11):1079–1093

    PubMed  Google Scholar 

  7. Mitha AP, Maynard KI (2001) Gacyclidine (Beaufour-Ipsen). Curr Opin Investig Drugs 2(6):814–819

    PubMed  Google Scholar 

  8. Benzel EC, Khare V, Fowler MR (1992) Effects of naloxone and nalmefene in rat spinal cord injury induced by the ventral compression technique. J Spinal Disord 5(1):75–77

    PubMed  Google Scholar 

  9. Wrathall JR, Choiniere D, Teng YD (1994) Dose-dependent reduction of tissue loss and functional impairment after spinal cord trauma with the AMPA/kainate antagonist NBQX. J Neurosci 14(11 Pt 1):6598–6607

    PubMed  Google Scholar 

  10. Bracken MB, Shepard MJ, Collins WF, Holford TR, Young W, Baskin DS, Eisenberg HM, Flamm E, Leo-Summers L, Maroon J (1990) A randomized, controlled trial of methylprednisolone or naloxone in the treatment of acute spinal-cord injury. Results of the Second National Acute Spinal Cord Injury Study. N Engl J Med 322(20):1405–1411

    PubMed  Google Scholar 

  11. Farooqui AA, Horrocks LA (1998) Lipid peroxides in the free radical pathophysiology of brain diseases. Cell Mol Neurobiol 18(6):599–608

    Article  PubMed  Google Scholar 

  12. Nakauchi K, Ikata T, Katoh S, Hamada Y, Tsuchiya K, Fukuzawa K (1996) Effects of lecithinized superoxide dismutase on rat spinal cord injury. J Neurotrauma 13(10):573–582

    PubMed  Google Scholar 

  13. Sugawara T, Lewen A, Gasche Y, Yu F, Chan PH (2002) Overexpression of SOD1 protects vulnerable motor neurons after spinal cord injury by attenuating mitochondrial cytochrome c release. FASEB J 16(14):1997–1999

    PubMed  Google Scholar 

  14. Farooque M, Isaksson J, Olsson Y (2001) Improved recovery after spinal cord injury in neuronal nitric oxide synthase-deficient mice but not in TNF-alpha-deficient mice. J Neurotrauma 18(1):105–114

    Article  PubMed  Google Scholar 

  15. Pearse DD, Chatzipanteli K, Marcillo AE, Bunge MB, Dietrich WD (2003) Comparison of INOS inhibition by antisense and pharmacological inhibitors after spinal cord injury. J Neuropathol Exp Neurol 62(11):1096–1107

    PubMed  Google Scholar 

  16. Yuceer N, Tuna H, Attar A, Sargon MF, Egemen N (2002) The effects of topical l-arginine and Ng-nitro-l-arginine methyl ester after experimental acute spinal cord injury. A light and electron microscopic study. Neurosurg Rev 25(3):184–190

    Article  PubMed  Google Scholar 

  17. Bozbuga M, Izgi N, Canbolat A (1998) The effects of chronic alpha-tocopherol administration on lipid peroxidation in an experimental model of acute spinal cord injury. Neurosurg Rev 21(1):36–42

    Article  PubMed  Google Scholar 

  18. Fujimoto T, Nakamura T, Ikeda T, Takagi K (2000) Potent protective effects of melatonin on experimental spinal cord injury. Spine 25(7):769–775

    Article  PubMed  Google Scholar 

  19. Fujimoto T, Nakamura T, Ikeda T, Taoka Y, Takagi K (2000) Effects of EPC-K1 on lipid peroxidation in experimental spinal cord injury. Spine 25(1):24–29

    Article  PubMed  Google Scholar 

  20. Hall ED, Yonkers PA, Andrus PK, Cox JW, Anderson DK (1992) Biochemistry and pharmacology of lipid antioxidants in acute brain and spinal cord injury. J Neurotrauma 9(Suppl 2):S425–S442

    PubMed  Google Scholar 

  21. Chang RC, Rota C, Glover RE, Mason RP, Hong JS (2000) A novel effect of an opioid receptor antagonist, naloxone, on the production of reactive oxygen species by microglia: a study by electron paramagnetic resonance spectroscopy. Brain Res 854(1–2):224–229

    Article  PubMed  Google Scholar 

  22. Diaz-Ruiz A, Rios C, Duarte I, Correa D, Guizar-Sahagun G, Grijalva I, Ibarra A (1999) Cyclosporin-A inhibits lipid peroxidation after spinal cord injury in rats. Neurosci Lett 266(1):61–64

    Article  PubMed  Google Scholar 

  23. Gorgulu A, Kiris T, Unal F, Turkoglu U, Kucuk M, Cobanoglu S (2000) Superoxide dismutase activity and the effects of NBQX and CPP on lipid peroxidation in experimental spinal cord injury. Res Exp Med (Berl) 199(5):285–293

    Article  Google Scholar 

  24. Haghighi SS, Clapper A, Johnson GC, Stevens A, Prapaisilp A (1998) Effect of 4-aminopyridine and single-dose methylprednisolone on functional recovery after a chronic spinal cord injury. Spinal Cord 36(1):6–12

    Article  PubMed  Google Scholar 

  25. Hall ED (1992) The neuroprotective pharmacology of methylprednisolone. J Neurosurg 76(1):13–22

    PubMed  Google Scholar 

  26. Rabchevsky AG, Fugaccia I, Sullivan PG, Blades DA, Scheff SW (2002) Efficacy of methylprednisolone therapy for the injured rat spinal cord. J Neurosci Res 68(1):7–18

    Article  PubMed  Google Scholar 

  27. Takami T, Oudega M, Bethea JR, Wood PM, Kleitman N, Bunge MB (2002) Methylprednisolone and interleukin-10 reduce gray matter damage in the contused Fischer rat thoracic spinal cord but do not improve functional outcome. J Neurotrauma 19(5):653–666

    Article  PubMed  Google Scholar 

  28. Wells JE, Hurlbert RJ, Fehlings MG, Yong VW (2003) Neuroprotection by minocycline facilitates significant recovery from spinal cord injury in mice. Brain 126(Pt 7):1628–1637

    Article  PubMed  Google Scholar 

  29. Bracken MB, Shepard MJ, Collins WF Jr, Holford TR, Baskin DS, Eisenberg HM, Flamm E, Leo-Summers L, Maroon JC, Marshall LF (1992) Methylprednisolone or naloxone treatment after acute spinal cord injury: 1-year follow-up data. Results of the Second National Acute Spinal Cord Injury Study. J Neurosurg 76(1):23–31

    PubMed  Google Scholar 

  30. Bracken MB, Shepard MJ, Holford TR, Leo-Summers L, Aldrich EF, Fazl M, Fehlings M, Herr DL, Hitchon PW, Marshall LF, Nockels RP, Pascale V, Perot PL Jr, Piepmeier J, Sonntag VK, Wagner F, Wilberger JE, Winn HR, Young W (1997) Administration of methylprednisolone for 24 or 48 hours or tirilazad mesylate for 48 hours in the treatment of acute spinal cord injury. Results of the Third National Acute Spinal Cord Injury Randomized Controlled Trial. National Acute Spinal Cord Injury Study. JAMA 277(20):1597–1604

    Article  PubMed  Google Scholar 

  31. Bracken MB, Shepard MJ, Holford TR, Leo-Summers L, Aldrich EF, Fazl M, Fehlings MG, Herr DL, Hitchon PW, Marshall LF, Nockels RP, Pascale V, Perot PL Jr, Piepmeier J, Sonntag VK, Wagner F, Wilberger JE, Winn HR, Young W (1998) Methylprednisolone or tirilazad mesylate administration after acute spinal cord injury: 1-year follow up. Results of the Third National Acute Spinal Cord Injury Randomized Controlled Trial. J Neurosurg 89(5):699–706

    PubMed  Google Scholar 

  32. Hurlbert RJ (2001) The role of steroids in acute spinal cord injury: an evidence-based analysis. Spine 26(24 Suppl):S39–S46

    Article  PubMed  Google Scholar 

  33. Nesathurai S (1998) Steroids and spinal cord injury: revisiting the NASCIS 2 and NASCIS 3 trials. J Trauma 45(6):1088–1093

    PubMed  Google Scholar 

  34. Sapolsky RM (1996) Stress, glucocorticoids, and damage to the nervous system: the current state of confusion. Stress 1(1):1–19

    PubMed  Google Scholar 

  35. Guth L, Zhang Z, Roberts E (1994) Key role for pregnenolone in combination therapy that promotes recovery after spinal cord injury. Proc Natl Acad Sci U S A 91(25):12308–12312

    PubMed  Google Scholar 

  36. Sribnick EA, Wingrave JM, Matzelle DD, Ray SK, Banik NL (2003) Estrogen as a neuroprotective agent in the treatment of spinal cord injury. Ann N Y Acad Sci 993:125–133

    PubMed  Google Scholar 

  37. Thomas AJ, Nockels RP, Pan HQ, Shaffrey CI, Chopp M (1999) Progesterone is neuroprotective after acute experimental spinal cord trauma in rats. Spine 24(20):2134–2138

    Article  PubMed  Google Scholar 

  38. Yong VW, Power C, Forsyth P, Edwards DR (2001) Metalloproteinases in biology and pathology of the nervous system. Nat Rev Neurosci 2(7):502–511

    Article  PubMed  Google Scholar 

  39. Lee SR, Lo EH (2004) Induction of caspase-mediated cell death by matrix metalloproteinases in cerebral endothelial cells after hypoxia–reoxygenation. J Cereb Blood Flow Metab 24(7):720–727

    Article  PubMed  Google Scholar 

  40. Noble LJ, Donovan F, Igarashi T, Goussev S, Werb Z (2002) Matrix metalloproteinases limit functional recovery after spinal cord injury by modulation of early vascular events. J Neurosci 22(17):7526–7535

    PubMed  Google Scholar 

  41. Wells JE, Rice TK, Nuttall RK, Edwards DR, Zekki H, Rivest S, Yong VW (2003) An adverse role for matrix metalloproteinase 12 after spinal cord injury in mice. J Neurosci 23(31):10107–10115

    PubMed  Google Scholar 

  42. Bevilacqua MP (1993) Endothelial-leukocyte adhesion molecules. Annu Rev Immunol 11:767–804

    Article  PubMed  Google Scholar 

  43. Hynes RO (1992) Integrins: versatility, modulation, and signaling in cell adhesion. Cell 69(1):11–25

    Article  PubMed  Google Scholar 

  44. Farooque M, Isaksson J, Olsson Y (1999) Improved recovery after spinal cord trauma in ICAM-1 and P-selectin knockout mice. Neuroreport 10(1):131–134

    PubMed  Google Scholar 

  45. Hamada Y, Ikata T, Katoh S, Nakauchi K, Niwa M, Kawai Y, Fukuzawa K (1996) Involvement of an intercellular adhesion molecule 1-dependent pathway in the pathogenesis of secondary changes after spinal cord injury in rats. J Neurochem 66(4):1525–1531

    PubMed  Google Scholar 

  46. Taoka Y, Okajima K, Uchiba M, Murakami K, Kushimoto S, Johno M, Naruo M, Okabe H, Takatsuki K (1997) Role of neutrophils in spinal cord injury in the rat. Neuroscience 79(4):1177–1182

    Article  PubMed  Google Scholar 

  47. Gris D, Marsh DR, Oatway MA, Chen Y, Hamilton EF, Dekaban GA, Weaver LC (2004) Transient blockade of the CD11d/CD18 integrin reduces secondary damage after spinal cord injury, improving sensory, autonomic, and motor function. J Neurosci 24(16):4043–4051

    Article  PubMed  Google Scholar 

  48. Yang L, Blumbergs PC, Jones NR, Manavis J, Sarvestani GT, Ghabriel MN (2004) Early expression and cellular localization of proinflammatory cytokines interleukin-1beta, interleukin-6, and tumor necrosis factor-alpha in human traumatic spinal cord injury. Spine 29(9):966–971

    Article  PubMed  Google Scholar 

  49. Martin-Villalba A, Hahne M, Kleber S, Vogel J, Falk W, Schenkel J, Krammer PH (2001) Therapeutic neutralization of CD95L and TNF attentuates brain damage in stroke. Cell Death Differ 8:679–686

    Article  PubMed  Google Scholar 

  50. Demjen D, Klussmann S, Kleber S, Zuliani C, Stieltjes B, Metzger C, Hirt UA, Walczak H, Falk W, Essig M, Edler L, Krammer PH, Martin-Villalba A (2004) Neutralization of CD95 ligand promotes regeneration and functional recovery after spinal cord injury. Nat Med 10(4):389–395

    Article  PubMed  Google Scholar 

  51. Nesic O, Xu GY, McAdoo D, High KW, Hulsebosch C, Perez-Pol R (2001) IL-1 receptor antagonist prevents apoptosis and caspase-3 activation after spinal cord injury. J Neurotrauma 18(9):947–956

    PubMed  Google Scholar 

  52. Bethea JR, Nagashima H, Acosta MC, Briceno C, Gomez F, Marcillo AE, Loor K, Green J, Dietrich WD (1999) Systemically administered interleukin-10 reduces tumor necrosis factor-alpha production and significantly improves functional recovery following traumatic spinal cord injury in rats. J Neurotrauma 16(10):851–863

    PubMed  Google Scholar 

  53. Ghirnikar RS, Lee YL, Eng LF (2000) Chemokine antagonist infusion attenuates cellular infiltration following spinal cord contusion injury in rat. J Neurosci Res 59(1):63–73

    Article  PubMed  Google Scholar 

  54. Hains BC, Yucra JA, Hulsebosch CE (2001) Reduction of pathological and behavioral deficits following spinal cord contusion injury with the selective cyclooxygenase-2 inhibitor NS-398. J Neurotrauma 18(4):409–423

    Article  PubMed  Google Scholar 

  55. Resnick DK, Graham SH, Dixon CE, Marion DW (1998) Role of cyclooxygenase 2 in acute spinal cord injury. J Neurotrauma 15(12):1005–1013

    PubMed  Google Scholar 

  56. Yamamoto T, Nozaki-Taguchi N (1996) Analysis of the effects of cyclooxygenase (COX)-1 and COX-2 in spinal nociceptive transmission using indomethacin, a non-selective COX inhibitor, and NS-398, a COX-2 selective inhibitor. Brain Res 739(1–2):104–110

    Article  PubMed  Google Scholar 

  57. Rappert A, Bechmann I, Pivneva T, Mahlo J, Biber K, Nolte C, Kovac AD, Gerard C, Boddeke HW, Nitsch R, Kettenmann H (2004) CXCR3-dependent microglial recruitment is essential for dendrite loss after brain lesion. J Neurosci 24(39):8500–8509

    Article  PubMed  Google Scholar 

  58. Hammarberg H, Lidman O, Lundberg C, Eltayeb SY, Gielen AW, Muhallab S, Svenningsson A, Linda H, Der Meide PH, Cullheim S, Olsson T, Piehl F (2000) Neuroprotection by encephalomyelitis: rescue of mechanically injured neurons and neurotrophin production by CNS-infiltrating T and natural killer cells. J Neurosci 20(14):5283–5291

    PubMed  Google Scholar 

  59. Moalem G, Gdalyahu A, Shani Y, Otten U, Lazarovici P, Cohen IR, Schwartz M (2000) Production of neurotrophins by activated T cells: implications for neuroprotective autoimmunity. J Autoimmun 15(3):331–345

    Article  PubMed  Google Scholar 

  60. Hauben E, Butovsky O, Nevo U, Yoles E, Moalem G, Agranov E, Mor F, Leibowitz-Amit R, Pevsner E, Akselrod S, Neeman M, Cohen IR, Schwartz M (2000) Passive or active immunization with myelin basic protein promotes recovery from spinal cord contusion. J Neurosci 20(17):6421–6430

    PubMed  Google Scholar 

  61. Hauben E, Ibarra A, Mizrahi T, Barouch R, Agranov E, Schwartz M (2001) Vaccination with a Nogo-A-derived peptide after incomplete spinal-cord injury promotes recovery via a T-cell-mediated neuroprotective response: comparison with other myelin antigens. Proc Natl Acad Sci U S A 98(26):15173–15178

    Article  PubMed  Google Scholar 

  62. Kipnis J, Mizrahi T, Hauben E, Shaked I, Shevach E, Schwartz M (2002) Neuroprotective autoimmunity: naturally occurring CD4+CD25+ regulatory T cells suppress the ability to withstand injury to the central nervous system. Proc Natl Acad Sci U S A 99(24):15620–15625

    Article  PubMed  Google Scholar 

  63. Katoh K, Ikata T, Katoh S, Hamada Y, Nakauchi K, Sano T, Niwa M (1996) Induction and its spread of apoptosis in rat spinal cord after mechanical trauma. Neurosci Lett 216(1):9–12

    Article  PubMed  Google Scholar 

  64. Li GL, Brodin G, Farooque M, Funa K, Holtz A, Wang WL, Olsson Y (1996) Apoptosis and expression of Bcl-2 after compression trauma to rat spinal cord. J Neuropathol Exp Neurol 55(3):280–289

    PubMed  Google Scholar 

  65. Liu XZ, Xu XM, Hu R, Du C, Zhang SX, Mcdonald JW, Dong HX, Wu YJ, Fan GS, Jacquin MF, Hsu CY, Choi DW (1997) Neuronal and glial apoptosis after traumatic spinal cord injury. J Neurosci 17(14):5395–5406

    PubMed  Google Scholar 

  66. Shuman SL, Bresnahan JC, Beattie MS (1997) Apoptosis of microglia and oligodendrocytes after spinal cord contusion in rats. J Neurosci Res 50(5):798–808

    Article  PubMed  Google Scholar 

  67. Crowe MJ, Bresnahan JC, Shuman SL, Masters JN, Beattie MS (1997) Apoptosis and delayed degeneration after spinal cord injury in rats and monkeys. Nat Med 3(1):73–76

    Article  PubMed  Google Scholar 

  68. Emery E, Aldana P, Bunge MB, Puckett W, Srinivasan A, Keane RW, Bethea J, Levi AD (1998) Apoptosis after traumatic human spinal cord injury. J Neurosurg 89(6):911–920

    PubMed  Google Scholar 

  69. Hains BC, Black JA, Waxman SG (2003) Primary cortical motor neurons undergo apoptosis after axotomizing spinal cord injury. J Comp Neurol 462(3):328–341

    Article  PubMed  Google Scholar 

  70. Lee BH, Lee KH, Kim UJ, Yoon do H, Sohn JH, Choi SS, Yi IG, Park YG (2004) Injury in the spinal cord may produce cell death in the brain. Brain Res 1020(1–2):37–44

    Article  PubMed  Google Scholar 

  71. Li GL, Farooque M, Holtz A, Olsson Y (1999) Apoptosis of oligodendrocytes occurs for long distances away from the primary injury after compression trauma to rat spinal cord. Acta Neuropathol (Berl) 98(5):473–480

    Article  Google Scholar 

  72. Springer JE, Azbill RD, Knapp PE (1999) Activation of the caspase-3 apoptotic cascade in traumatic spinal cord injury. Nat Med 5(8):943–946

    Article  PubMed  Google Scholar 

  73. Nicholson DW (2000) From bench to clinic with apoptosis-based therapeutic agents. Nature 407(6805):810–816

    Article  PubMed  Google Scholar 

  74. Li M, Ona VO, Chen M, Kaul M, Tenneti L, Zhang X, Stieg PE, Lipton SA, Friedlander RM (2000) Functional role and therapeutic implications of neuronal caspase-1 and -3 in a mouse model of traumatic spinal cord injury. Neuroscience 99(2):333–342

    Article  PubMed  Google Scholar 

  75. Ozawa H, Keane RW, Marcillo AE, Diaz PH, Dietrich WD (2002) Therapeutic strategies targeting caspase inhibition following spinal cord injury in rats. Exp Neurol 177(1):306–313

    Article  PubMed  Google Scholar 

  76. Campbell DS, Holt CE (2003) Apoptotic pathway and MAPKs differentially regulate chemotropic responses of retinal growth cones. Neuron 37(6):939–952

    Article  PubMed  Google Scholar 

  77. Ray SK, Hogan EL, Banik NL (2003) Calpain in the pathophysiology of spinal cord injury: neuroprotection with calpain inhibitors. Brain Res Brain Res Rev 42(2):169–185

    Article  PubMed  Google Scholar 

  78. Schumacher PA, Siman RG, Fehlings MG (2000) Pretreatment with calpain inhibitor CEP-4143 inhibits calpain I activation and cytoskeletal degradation, improves neurological function, and enhances axonal survival after traumatic spinal cord injury. J Neurochem 74(4):1646–1655

    Article  PubMed  Google Scholar 

  79. Yuan J, Yankner BA (2000) Apoptosis in the nervous system. Nature 407(6805):802–809

    Article  PubMed  Google Scholar 

  80. Saavedra RA, Murray M, de Lacalle S, Tessler A (2000) In vivo neuroprotection of injured CNS neurons by a single injection of a DNA plasmid encoding the Bcl-2 gene. Prog Brain Res 128:365–372

    PubMed  Google Scholar 

  81. Seki T, Hida K, Tada M, Koyanagi I, Iwasaki Y (2003) Role of the Bcl-2 gene after contusive spinal cord injury in mice. Neurosurgery 53(1):192–198

    Article  PubMed  Google Scholar 

  82. Dong H, Fazzaro A, Xiang C, Korsmeyer SJ, Jacquin MF, Mcdonald JW (2003) Enhanced oligodendrocyte survival after spinal cord injury in Bax-deficient mice and mice with delayed wallerian degeneration. J Neurosci 23(25):8682–8691

    PubMed  Google Scholar 

  83. Lee YB, Yune TY, Baik SY, Shin YH, Du S, Rhim H, Lee EB, Kim YC, Shin ML, Markelonis GJ, Oh TH (2000) Role of tumor necrosis factor-alpha in neuronal and glial apoptosis after spinal cord injury. Exp Neurol 166(1):190–195

    Article  PubMed  Google Scholar 

  84. Kim GM, Xu J, Song SK, Yan P, Ku G, Xu XM, Hsu CY (2001) Tumor necrosis factor receptor deletion reduces nuclear factor-kappaB activation, cellular inhibitor of apoptosis protein 2 expression, and functional recovery after traumatic spinal cord injury. J Neurosci 21(17):6617–6625

    PubMed  Google Scholar 

  85. Casha S, Yu WR, Fehlings MG (2001) Oligodendroglial apoptosis occurs along degenerating axons and is associated with FAS and P75 expression following spinal cord injury in the rat. Neuroscience 103(1):203–218

    Article  PubMed  Google Scholar 

  86. Beattie MS, Harrington AW, Lee R, Kim JY, Boyce SL, Longo FM, Bresnahan JC, Hempstead BL, Yoon SO (2002) ProNGF induces P75-mediated death of oligodendrocytes following spinal cord injury. Neuron 36(3):375–386

    Article  PubMed  Google Scholar 

  87. Kischkel FC, Hellbardt S, Behrmann I, Germer M, Pawlita M, Krammer PH, Peter ME (1995) Cytotoxicity-dependent APO-1 (Fas/CD95)-associated proteins form a death-inducing signaling complex (DISC) with the receptor. EMBO J 14(22):5579–5588

    PubMed  Google Scholar 

  88. Medema JP, Scaffidi C, Kischkel FC, Shevchenko A, Mann M, Krammer PH, Peter ME (1997) FLICE is activated by association with the CD95 death-inducing signaling complex (DISC). EMBO J 16(10):2794–2804

    PubMed  Google Scholar 

  89. Yoshino O, Matsuno H, Nakamura H, Yudoh K, Abe Y, Sawai T, Uzuki M, Yonehara S, Kimura T (2004) The role of Fas-mediated apoptosis after traumatic spinal cord injury. Spine 29(13):1394–1404

    Article  PubMed  Google Scholar 

  90. Yrjanheikki J, Tikka T, Keinanen R, Goldsteins G, Chan PH, Koistinaho J (1999) A tetracycline derivative, minocycline, reduces inflammation and protects against focal cerebral ischemia with a wide therapeutic window. Proc Natl Acad Sci U S A 96(23):13496–13500

    Article  PubMed  Google Scholar 

  91. Yrjanheikki J, Keinanen R, Pellikka M, Hokfelt T, Koistinaho J (1998) Tetracyclines inhibit microglial activation and are neuroprotective in global brain ischemia. Proc Natl Acad Sci U S A 95(26):15769–15774

    Article  PubMed  Google Scholar 

  92. Chen M, Ona VO, Li M, Ferrante RJ, Fink KB, Zhu S, Bian J, Guo L, Farrell LA, Hersch SM, Hobbs W, Vonsattel JP, Cha JH, Friedlander RM (2000) Minocycline inhibits Caspase-1 and Caspase-3 expression and delays mortality in a transgenic mouse model of Huntington disease. Nat Med 6(7):797–801

    Article  PubMed  Google Scholar 

  93. Teng YD, Choi H, Onario RC, Zhu S, Desilets FC, Lan S, Woodard EJ, Snyder EY, Eichler ME, Friedlander RM (2004) Minocycline inhibits contusion-triggered mitochondrial cytochrome c release and mitigates functional deficits after spinal cord injury. Proc Natl Acad Sci U S A 101(9):3071–3076

    Article  PubMed  Google Scholar 

  94. Lee SM, Yune TY, Kim SJ, Park do W, Lee YK, Kim YC, Oh YJ, Markelonis GJ, Oh TH (2003) Minocycline reduces cell death and improves functional recovery after traumatic spinal cord injury in the rat. J Neurotrauma 20(10):1017–1027

    Article  PubMed  Google Scholar 

  95. Stirling DP, Khodarahmi K, Liu J, McPhail LT, McBride CB, Steeves JD, Ramer MS, Tetzlaff W (2004) Minocycline treatment reduces delayed oligodendrocyte death, attenuates axonal dieback, and improves functional outcome after spinal cord injury. J Neurosci 24(9):2182–2190

    Article  PubMed  Google Scholar 

  96. Sasaki R (2003) Pleiotropic functions of erythropoietin. Intern Med 42(2):142–149

    PubMed  Google Scholar 

  97. Calapai G, Marciano MC, Corica F, Allegra A, Parisi A, Frisina N, Caputi AP, Buemi M (2000) Erythropoietin protects against brain ischemic injury by inhibition of nitric oxide formation. Eur J Pharmacol 401(3):349–356

    Article  PubMed  Google Scholar 

  98. Kawakami M, Sekiguchi M, Sato K, Kozaki S, Takahashi M (2001) Erythropoietin receptor-mediated inhibition of exocytotic glutamate release confers neuroprotection during chemical ischemia. J Biol Chem 276(42):39469–39475

    Article  PubMed  Google Scholar 

  99. Digicaylioglu M, Lipton SA (2001) Erythropoietin-mediated neuroprotection involves cross-talk between Jak2 and NF-kappaB signalling cascades. Nature 412(6847):641–647

    Article  PubMed  Google Scholar 

  100. Villa P, Bigini P, Mennini T, Agnello D, Laragione T, Cagnotto A, Viviani B, Marinovich M, Cerami A, Coleman TR, Brines M, Ghezzi P (2003) Erythropoietin selectively attenuates cytokine production and inflammation in cerebral ischemia by targeting neuronal apoptosis. J Exp Med 198(6):971–975

    Article  PubMed  Google Scholar 

  101. Shingo T, Sorokan ST, Shimazaki T, Weiss S (2001) Erythropoietin regulates the in vitro and in vivo production of neuronal progenitors by mammalian forebrain neural stem cells. J Neurosci 21(24):9733–9743

    PubMed  Google Scholar 

  102. Ehrenreich H, Hasselblatt M, Dembowski C, Cepek L, Lewczuk P, Stiefel M, Rustenbeck HH, Breiter N, Jacob S, Knerlich F, Bohn M, Poser W, Ruther E, Kochen M, Gefeller O, Gleiter C, Wessel TC, De Ryck M, Itri L, Prange H, Cerami A, Brines M, Siren AL (2002) Erythropoietin therapy for acute stroke is both safe and beneficial. Mol Med 8(8):495–505

    PubMed  Google Scholar 

  103. Gorio A, Gokmen N, Erbayraktar S, Yilmaz O, Madaschi L, Cichetti C, Di Giulio AM, Vardar E, Cerami A, Brines M (2002) Recombinant human erythropoietin counteracts secondary injury and markedly enhances neurological recovery from experimental spinal cord trauma. Proc Natl Acad Sci U S A 99(14):9450–9455

    Article  PubMed  Google Scholar 

  104. Erbayraktar S, Grasso G, Sfacteria A, Xie QW, Coleman T, Kreilgaard M, Torup L, Sager T, Erbayraktar Z, Gokmen N, Yilmaz O, Ghezzi P, Villa P, Fratelli M, Casagrande S, Leist M, Helboe L, Gerwein J, Christensen S, Geist MA, Pedersen LO, Cerami-Hand C, Wuerth JP, Cerami A, Brines M (2003) Asialoerythropoietin is a nonerythropoietic cytokine with broad neuroprotective activity in vivo. Proc Natl Acad Sci U S A 100(11):6741–6746

    Article  PubMed  Google Scholar 

  105. Leist M, Ghezzi P, Grasso G, Bianchi R, Villa P, Fratelli M, Savino C, Bianchi M, Nielsen J, Gerwien J, Kallunki P, Larsen AK, Helboe L, Christensen S, Pedersen LO, Nielsen M, Torup L, Sager T, Sfacteria A, Erbayraktar S, Erbayraktar Z, Gokmen N, Yilmaz O, Cerami-Hand C, Xie QW, Coleman T, Cerami A, Brines M (2004) Derivatives of erythropoietin that are tissue protective but not erythropoietic. Science 305(5681):239–242

    Article  PubMed  Google Scholar 

  106. Silver J, Miller JH (2004) Regeneration beyond the glial scar. Nat Rev Neurosci 5(2):146–156

    Article  PubMed  Google Scholar 

  107. He Z, Koprivica V (2004) The Nogo signaling pathway for regeneration block. Annu Rev Neurosci 27:341–368

    Article  PubMed  Google Scholar 

  108. Bradbury EJ, Moon LD, Popat RJ, King VR, Bennett GS, Patel PN, Fawcett JW, McMahon SB (2002) Chondroitinase ABC promotes functional recovery after spinal cord injury. Nature 416(6881):636–640

    Article  PubMed  Google Scholar 

  109. Berry M (1982) Post-injury myelin-breakdown products inhibit axonal growth: an hypothesis to explain the failure of axonal regeneration in the mammalian central nervous system. Bibl Anat (23):1–11

    Google Scholar 

  110. Cordes N (2004) Overexpression of hyperactive integrin-linked kinase leads to increased cellular radiosensitivity. Cancer Res 64(16):5683–5692

    PubMed  Google Scholar 

  111. Caroni P, Schwab ME (1988) Two membrane protein fractions from rat central myelin with inhibitory properties for neurite growth and fibroblast spreading. J Cell Biol 106(4):1281–1288

    Article  PubMed  Google Scholar 

  112. Caroni P, Schwab ME (1988) Antibody against myelin-associated inhibitor of neurite growth neutralizes nonpermissive substrate properties of CNS white matter. Neuron 1(1):85–96

    Article  PubMed  Google Scholar 

  113. Schnell L, Schwab ME (1990) Axonal Regeneration in the rat spinal cord produced by an antibody against myelin-associated neurite growth inhibitors. Nature 343(6255):269–272

    Article  PubMed  Google Scholar 

  114. Chen MS, Huber AB, van der Haar ME, Frank M, Schnell L, Spillmann AA, Christ F, Schwab ME (2000) Nogo-A is a myelin-associated neurite outgrowth inhibitor and an antigen for monoclonal antibody IN-1. Nature 403(6768):434–439

    Article  PubMed  Google Scholar 

  115. GrandPre T, Nakamura F, Vartanian T, Strittmatter SM (2000) Identification of the Nogo inhibitor of axon regeneration as a reticulon protein. Nature 403(6768):439–444

    Article  PubMed  Google Scholar 

  116. Prinjha R, Moore SE, Vinson M, Blake S, Morrow R, Christie G, Michalovich D, Simmons DL, Walsh FS (2000) Inhibitor of neurite outgrowth in humans. Nature 403(6768):383–384

    Article  PubMed  Google Scholar 

  117. Schwab ME (2004) Nogo and axon regeneration. Curr Opin Neurobiol 14(1):118–124

    Article  PubMed  Google Scholar 

  118. Kim JE, Li S, GrandPre T, Qiu D, Strittmatter SM (2003) Axon regeneration in young adult mice lacking Nogo-A/B. Neuron 38(2):187–199

    Article  PubMed  Google Scholar 

  119. Simonen M, Pedersen V, Weinmann O, Schnell L, Buss A, Ledermann B, Christ F, Sansig G, van der Putten H, Schwab ME (2003) Systemic deletion of the myelin-associated outgrowth inhibitor Nogo-A improves regenerative and plastic responses after spinal cord injury. Neuron 38(2):201–211

    Article  PubMed  Google Scholar 

  120. Zheng B, Ho C, Li S, Keirstead H, Steward O, Tessier-Lavigne M (2003) Lack of enhanced spinal regeneration in Nogo-deficient mice. Neuron 38(2):213–224

    Article  PubMed  Google Scholar 

  121. Domeniconi M, Cao Z, Spencer T, Sivasankaran R, Wang K, Nikulina E, Kimura N, Cai H, Deng K, Gao Y, He Z, Filbin M (2002) Myelin-associated glycoprotein interacts with the Nogo66 receptor to inhibit neurite outgrowth. Neuron 35(2):283–290

    Article  PubMed  Google Scholar 

  122. Fournier AE, GrandPre T, Strittmatter SM (2001) Identification of a receptor mediating Nogo-66 inhibition of axonal regeneration. Nature 409(6818):341–346

    Article  PubMed  Google Scholar 

  123. Wang KC, Kim JA, Sivasankaran R, Segal R, He Z (2002) P75 Interacts with the Nogo receptor as a co-receptor for Nogo, MAG and OMgp. Nature 420(6911):74–78

    Article  PubMed  Google Scholar 

  124. Yamashita T, Higuchi H, Tohyama M (2002) The P75 receptor transduces the signal from myelin-associated glycoprotein to rho. J Cell Biol 157(4):565–570

    Article  PubMed  Google Scholar 

  125. Song XY, Zhong JH, Wang X, Zhou XF (2004) Suppression of P75NTR does not promote regeneration of injured spinal cord in mice. J Neurosci 24(2):542–546

    Article  PubMed  Google Scholar 

  126. Dergham P, Ellezam B, Essagian C, Avedissian H, Lubell WD, McKerracher L (2002) Rho signaling pathway targeted to promote spinal cord repair. J Neurosci 22(15):6570–6577

    PubMed  Google Scholar 

  127. Fournier AE, Takizawa BT, Strittmatter SM (2003) Rho kinase inhibition enhances axonal regeneration in the injured CNS. J Neurosci 23(4):1416–1423

    PubMed  Google Scholar 

  128. Lehmann M, Fournier A, Selles-Navarro I, Dergham P, Sebok A, Leclerc N, Tigyi G, McKerracher L (1999) Inactivation of rho signaling pathway promotes CNS axon regeneration. J Neurosci 19(17):7537–7547

    PubMed  Google Scholar 

  129. Moreau-Fauvarque C, Kumanogoh A, Camand E, Jaillard C, Barbin G, Boquet I, Love C, Jones EY, Kikutani H, Lubetzki C, Dusart I, Chedotal A (2003) The transmembrane semaphorin Sema4D/CD100, an inhibitor of axonal growth, is expressed on oligodendrocytes and upregulated after CNS lesion. J Neurosci 23(27):9229–9239

    PubMed  Google Scholar 

  130. Swiercz JM, Kuner R, Behrens J, Offermanns S (2002) Plexin-B1 directly interacts with PDZ-RhoGEF/LARG to regulate rhoA and growth cone morphology. Neuron 35(1):51–63

    Article  PubMed  Google Scholar 

  131. Rapalino O, Lazarov-Spiegler O, Agranov E, Velan GJ, Yoles E, Fraidakis M, Solomon A, Gepstein R, Katz A, Belkin M, Hadani M, Schwartz M (1998) Implantation of stimulated homologous macrophages results in partial recovery of paraplegic rats. Nat Med 4(7):814–821

    Article  PubMed  Google Scholar 

  132. Hauben E, Gothilf A, Cohen A, Butovsky O, Nevo U, Smirnov I, Yoles E, Akselrod S, Schwartz M (2003) Vaccination with dendritic cells pulsed with peptides of myelin basic protein promotes functional recovery from spinal cord injury. J Neurosci 23(25):8808–8819

    PubMed  Google Scholar 

  133. GrandPre T, Li S, Strittmatter SM (2002) Nogo-66 receptor antagonist peptide promotes axonal regeneration. Nature 417(6888):547–551

    Article  PubMed  Google Scholar 

  134. Barnett SC, Riddell JS (2004) Olfactory Ensheathing Cells (OECs) and the treatment of CNS injury: advantages and possible caveats. J Anat 204(1):57–67

    Article  PubMed  Google Scholar 

  135. Franklin RJ (2003) Remyelination by transplanted olfactory ensheathing cells. Anat Rec 271B(1):71–76

    Article  Google Scholar 

  136. Raisman G (2001) Olfactory ensheathing cells—another miracle cure for spinal cord injury? Nat Rev Neurosci 2(5):369–375

    Article  PubMed  Google Scholar 

  137. Duncan ID, Aguayo AJ, Bunge RP, Wood PM (1981) Transplantation of rat schwann cells grown in tissue culture into the mouse spinal cord. J Neurol Sci 49(2):241–252

    Article  PubMed  Google Scholar 

  138. Tuszynski MH, Weidner N, McCormack M, Miller I, Powell H, Conner J (1998) Grafts of genetically modified Schwann cells to the spinal cord: survival, axon growth, and myelination. Cell Transplant 7(2):187–196

    Article  PubMed  Google Scholar 

  139. Barnett SC, Hutchins AM, Noble M (1993) Purification of olfactory nerve ensheathing cells from the olfactory bulb. Dev Biol 155(2):337–350

    Article  PubMed  Google Scholar 

  140. Groves AK, Barnett SC, Franklin RJ, Crang AJ, Mayer M, Blakemore WF, Noble M (1993) Repair of demyelinated lesions by transplantation of purified O-2A progenitor cells. Nature 362(6419):453–455

    Article  PubMed  Google Scholar 

  141. Campbell K, Gotz M (2002) Radial glia: multi-purpose cells for vertebrate brain development. Trends Neurosci 25(5):235–238

    Article  PubMed  Google Scholar 

  142. Horner PJ, Gage FH (2000) Regenerating the damaged central nervous system. Nature 407(6807):963–970

    Article  PubMed  Google Scholar 

  143. Li Y, Field PM, Raisman G (1997) Repair of adult rat corticospinal tract by transplants of olfactory ensheathing cells. Science 277(5334):2000–2002

    Article  PubMed  Google Scholar 

  144. Ramon-Cueto A, Plant GW, Avila J, Bunge MB (1998) Long-distance axonal regeneration in the transected adult rat spinal cord is promoted by olfactory ensheathing glia transplants. J Neurosci 18(10):3803–3815

    PubMed  Google Scholar 

  145. Li Y, Raisman G (1994) Schwann cells induce sprouting in motor and sensory axons in the adult rat spinal cord. J Neurosci 14(7):4050–4063

    PubMed  Google Scholar 

  146. Li Y, Field PM, Raisman G (1998) Regeneration of adult rat corticospinal axons induced by transplanted olfactory ensheathing cells. J Neurosci 18(24):10514–10524

    PubMed  Google Scholar 

  147. Blesch A, Lu P, Tuszynski MH (2002) Neurotrophic factors, gene therapy, and neural stem cells for spinal cord repair. Brain Res Bull 57(6):833–838

    Article  PubMed  Google Scholar 

  148. Myckatyn TM, Mackinnon SE, Mcdonald JW (2004) Stem cell transplantation and other novel techniques for promoting recovery from spinal cord injury. Transpl Immunol 12(3–4):343–358

    Article  PubMed  Google Scholar 

  149. Mcdonald JW, Liu XZ, Qu Y, Liu S, Mickey SK, Turetsky D, Gottlieb DI, Choi DW (1999) Transplanted embryonic stem cells survive, differentiate and promote recovery in injured rat spinal cord. Nat Med 5(12):1410–1412

    Article  PubMed  Google Scholar 

  150. Mcdonald JW, Becker D (2003) Spinal cord injury: promising interventions and realistic goals. Am J Phys Med Rehabil 82(10 Suppl):S38–S49

    Article  PubMed  Google Scholar 

  151. Ceccatelli S, Tamm C, Sleeper E, Orrenius S (2004) Neural stem cells and cell death. Toxicol Lett 149(1–3):59–66

    Article  PubMed  Google Scholar 

  152. Johansson CB, Momma S, Clarke DL, Risling M, Lendahl U, Frisen J (1999) Identification of a neural stem cell in the adult mammalian central nervous system. Cell 96(1):25–34

    Article  PubMed  Google Scholar 

  153. Shihabuddin LS, Horner PJ, Ray J, Gage FH (2000) Adult spinal cord stem cells generate neurons after transplantation in the adult dentate gyrus. J Neurosci 20(23):8727–8735

    PubMed  Google Scholar 

  154. Hayes KC, Blight AR, Potter PJ, Allatt RD, Hsieh JT, Wolfe DL, Lam S, Hamilton JT (1993) Preclinical trial of 4-aminopyridine in patients with chronic spinal cord injury. Paraplegia 31(4):216–224

    PubMed  Google Scholar 

  155. Warrington AE, Asakura K, Bieber AJ, Ciric B, Van, Keulen, V, Kaveri SV, Kyle RA, Pease LR, Rodriguez M (2000) Human monoclonal antibodies reactive to oligodendrocytes promote remyelination in a model of multiple sclerosis. Proc Natl Acad Sci U S A 97(12):6820–6825

    Article  PubMed  Google Scholar 

  156. Cannella B, Hoban CJ, Gao YL, Garcia-Arenas R, Lawson D, Marchionni M, Gwynne D, Raine CS (1998) The neuregulin, glial growth factor 2, diminishes autoimmune demyelination and enhances remyelination in a chronic relapsing model for multiple sclerosis. Proc Natl Acad Sci U S A 95(17):10100–10105

    Article  PubMed  Google Scholar 

  157. Cai D, Shen Y, De Bellard M, Tang S, Filbin MT (1999) Prior exposure to neurotrophins blocks inhibition of axonal regeneration by MAG and myelin via a CAMP-dependent mechanism. Neuron 22(1):89–101

    Article  PubMed  Google Scholar 

  158. Qiu J, Cai D, Dai H, McAtee M, Hoffman PN, Bregman BS, Filbin MT (2002) Spinal axon regeneration induced by elevation of cyclic AMP. Neuron 34(6):895–903

    Article  PubMed  Google Scholar 

  159. Spencer T, Filbin MT (2004) A role for CAMP in regeneration of the adult mammalian CNS. J Anat 204(1):49–55

    Article  PubMed  Google Scholar 

  160. Nikulina E, Tidwell JL, Dai HN, Bregman BS, Filbin MT (2004) The phosphodiesterase inhibitor rolipram delivered after a spinal cord lesion promotes axonal regeneration and functional recovery. Proc Natl Acad Sci U S A 101(23):8786–8790

    Article  PubMed  Google Scholar 

  161. Pearse DD, Pereira FC, Marcillo AE, Bates ML, Berrocal YA, Filbin MT, Bunge MB (2004) CAMP and schwann cells promote axonal growth and functional recovery after spinal cord injury. Nat Med 10(6):610–616

    Article  PubMed  Google Scholar 

  162. Becker T, Wullimann MF, Becker CG, Bernhardt RR, Schachner M (1997) Axonal regrowth after spinal cord transection in adult zebrafish. J Comp Neurol 377(4):577–595

    Article  PubMed  Google Scholar 

  163. Bhatt DH, Otto SJ, Depoister B, Fetcho JR (2004) Cyclic AMP-induced repair of zebrafish spinal circuits. Science 305(5681):254–258

    Article  PubMed  Google Scholar 

  164. Clemens S, Hue G, Sawchuk M, Zhu H, Hochman S (2004) Effects of dopaminergics and distribution of dopamine D2-like receptors in the spinal cord of wild type and D3 knockout mice. Spinal Cord Symposium. Christopher Reeve Paralysis Foundation, Springfield, NJ

    Google Scholar 

  165. Gu B, Olejar KJ, Reiter JP, Thor KB, Dolber PC (2004) Inhibition of bladder activity by 5-HT1 serotonin receptor agonists in cats with chronic spinal cord injury. J Pharmacol Exp Ther

  166. Baker-Herman TL, Fuller DD, Bavis RW, Zabka AG, Golder FJ, Doperalski NJ, Johnson RA, Watters JJ, Mitchell GS (2004) BDNF is necessary and sufficient for spinal respiratory plasticity following intermittent hypoxia. Nat Neurosci 7(1):48–55

    Article  PubMed  Google Scholar 

  167. Bareyre FM, Kerschensteiner M, Raineteau O, Mettenleiter TC, Weinmann O, Schwab ME (2004) The injured spinal cord spontaneously forms a new intraspinal circuit in adult rats. Nat Neurosci 7(3):269–277

    Article  PubMed  Google Scholar 

  168. Dietz V, Harkema SJ (2004) Locomotor activity in spinal cord-injured persons. J Appl Physiol 96(5):1954–1960

    Article  PubMed  Google Scholar 

  169. Harkema S (2004) The effects of stand training on standing, stepping, and bone mineral density afer clinically complete spinal cord injury. Spinal Cord Symposium. Christopher Reeve Paralysis Foundation, Springfield, NJ

    Google Scholar 

  170. Basu S, Aballa TC, Ferrell SM, Lynne CM, Brackett NL (2004) Inflammatory cytokine concentrations are elevated in seminal plasma of men with spinal cord injuries. J Androl 25(2):250–254

    PubMed  Google Scholar 

  171. Yezierski RP (2000) Pain following spinal cord injury: pathophysiology and central mechanisms. Prog Brain Res 129:429–449

    PubMed  Google Scholar 

  172. Drew GM, Siddall PJ, Duggan AW (2004) Mechanical allodynia following contusion injury of the rat spinal cord is associated with loss of GABAergic inhibition in the dorsal horn. Pain 109(3):379–388

    Article  PubMed  Google Scholar 

  173. Liu J, Wolfe D, Hao S, Huang S, Glorioso JC, Mata M, Fink DJ (2004) Peripherally delivered glutamic acid decarboxylase gene therapy for spinal cord injury pain. Mol Ther 10(1):57–66

    Article  PubMed  Google Scholar 

  174. Lindenlaub T, Teuteberg P, Hartung T, Sommer C (2000) Effects of neutralizing antibodies to TNF-alpha on pain-related behavior and nerve regeneration in mice with chronic constriction injury. Brain Res 866(1–2):15–22

    Article  PubMed  Google Scholar 

  175. Fairbanks CA, Schreiber KL, Brewer KL, Yu CG, Stone LS, Kitto KF, Nguyen HO, Grocholski BM, Shoeman DW, Kehl LJ, Regunathan S, Reis DJ, Yezierski RP, Wilcox GL (2000) Agmatine reverses pain induced by inflammation, neuropathy, and spinal cord injury. Proc Natl Acad Sci U S A 97(19):10584–10589

    Article  PubMed  Google Scholar 

  176. Yu CG, Marcillo AE, Fairbanks CA, Wilcox GL, Yezierski RP (2000) Agmatine improves locomotor function and reduces tissue damage following spinal cord injury. NeuroReport 11(14):3203–3207

    PubMed  Google Scholar 

  177. Anderson KD (2004) Targeting recovery: priorities of the spinal cord-injured population. J Neurotrauma 21(10):1371–1383

    Article  PubMed  Google Scholar 

  178. Bregman BS, Coumans JV, Dai HN, Kuhn PL, Lynskey J, McAtee M, Sandhu F (2002) Transplants and neurotrophic factors increase regeneration and recovery of function after spinal cord injury. Prog Brain Res 137:257–273

    PubMed  Google Scholar 

  179. Lu P, Yang H, Jones LL, Filbin MT, Tuszynski MH (2004) Combinatorial therapy with neurotrophins and CAMP promotes axonal regeneration beyond sites of spinal cord injury. J Neurosci 24(28):6402–6409

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

This paper is dedicated to M. Hergenhahn (deceased). We thank Ian Paul Martin for graphic design. We thank Susanne Kleber, Elisabeth Letellier, Nina Schreglmann, Henriette Uhlenhaut, Renee Wegrzyn, Cecilia Zuliani and Prof. Peter H. Krammer for critical reading. We also thank Prof. Manfred Zimmermann for the financial support of Deana Demjen. This work was supported by the Christopher Reeve Paralysis Foundation (grant KAC2-0101-2 and MA2-0301-2).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ana Martin-Villalba.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Klussmann, S., Martin-Villalba, A. Molecular targets in spinal cord injury. J Mol Med 83, 657–671 (2005). https://doi.org/10.1007/s00109-005-0663-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00109-005-0663-3

Keywords

Navigation