Skip to main content

Advertisement

Log in

Traumatic brain injury-induced axonal phenotypes react differently to treatment

  • Original Paper
  • Published:
Acta Neuropathologica Aims and scope Submit manuscript

Abstract

Injured axons with distinct morphologies have been found following mild traumatic brain injury (mTBI), although it is currently unclear whether they reflect varied responses to the injury or represent different stages of progressing pathology. This complicates evaluation of therapeutic interventions targeting axonal injury. To address this issue, we assessed axonal injury over time within a well-defined axonal population, while also evaluating mitochondrial permeability transition as a therapeutic target. We utilized mice expressing yellow fluorescent protein (YFP) in cortical neurons which were crossed with mice which lacked Cyclophilin D (CypD), a positive regulator of mitochondrial permeability transition pore opening. Their offspring were subjected to mTBI and the ensuing axonal injury was assessed using YFP expression and amyloid precursor protein (APP) immunohistochemistry, visualized by confocal and electron microscopy. YFP+ axons initially developed a single, APP+, focal swelling (proximal bulb) which progressed to axotomy. Disconnected axonal segments developed either a single bulb (distal bulb) or multiple bulbs (varicosities), which were APP and whose ultrastructure was consistent with ongoing Wallerian degeneration. CypD knock-out failed to reduce proximal bulb formation but decreased the number of distal bulbs and varicosities, as well as a population of small, APP+, callosal bulbs not associated with YFP+ axons. The observation that YFP+ axons contain several pathological morphologies points to the complexity of traumatic axonal injury. The fact that CypD knock-out reduced some, but not all, subtypes highlights the need to appropriately characterize injured axons when evaluating potential neuroprotective strategies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Alavian KN, Beutner G, Lazrove E, Sacchetti S, Park HA, Licznerski P et al (2014) An uncoupling channel within the c-subunit ring of the F1FO ATP synthase is the mitochondrial permeability transition pore. Proc Natl Acad Sci 111:10580–10585

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  2. Avery MA, Rooney TM, Pandya JD, Wishart TM, Gillingwater TH, Geddes JW et al (2012) WldS prevents axon degeneration through increased mitochondrial flux and enhanced mitochondrial Ca2+ buffering. Curr Biol 22:596–600

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  3. Baines CP, Kaiser RA, Purcell NH, Blair NS, Osinska H, Hambleton MA et al (2005) Loss of cyclophilin D reveals a critical role for mitochondrial permeability transition in cell death. Nature 434:658–662

    Article  CAS  PubMed  Google Scholar 

  4. Barrientos SA, Martinez NW, Yoo S, Jara JS, Zamorano S, Hetz C et al (2011) Axonal degeneration is mediated by the mitochondrial permeability transition pore. J Neurosci 31:966–978

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  5. Basso E, Fante L, Fowlkes J, Petronilli V, Forte MA, Bernardi P (2005) Properties of the permeability transition pore in mitochondria devoid of Cyclophilin D. J Biol Chem 280:18558–18561

    Article  CAS  PubMed  Google Scholar 

  6. Beirowski B, Nogradi A, Babetto E, Garcia-Alias G, Coleman MP (2010) Mechanisms of axonal spheroid formation in central nervous system Wallerian degeneration. J Neuropathol Exp Neurol 69:455–472

    Article  PubMed  Google Scholar 

  7. Benjamini Y, Hochberg Y (1995) Controlling the false discovery rate—a practical and powerful approach to multiple testing. J Roy Stat Soc Ser B Methodol 57:289–300

    Google Scholar 

  8. Bernardi P (2013) The mitochondrial permeability transition pore: a mystery solved? Front Physiol 4:95

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  9. Bonora M, Bononi A, De Marchi E, Giorgi C, Lebiedzinska M, Marchi S et al (2013) Role of the c subunit of the FO ATP synthase in mitochondrial permeability transition. Cell Cycle 12:674–683

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  10. Buki A, Okonkwo DO, Povlishock JT (1999) Postinjury cyclosporin A administration limits axonal damage and disconnection in traumatic brain injury. J Neurotrauma 16:511–521

    Article  CAS  PubMed  Google Scholar 

  11. Buki A, Povlishock JT (2006) All roads lead to disconnection? Traumatic axonal injury revisited. Acta Neurochir (Wien) 148:181–193 (discussion 193–184)

    Article  CAS  Google Scholar 

  12. Cesarovic N, Nicholls F, Rettich A, Kronen P, Hassig M, Jirkof P et al (2010) Isoflurane and sevoflurane provide equally effective anaesthesia in laboratory mice. Lab Anim 44:329–336

    Article  CAS  PubMed  Google Scholar 

  13. Conforti L, Gilley J, Coleman MP (2014) Wallerian degeneration: an emerging axon death pathway linking injury and disease. Nat Rev Neurosci 15:394–409

    Article  CAS  PubMed  Google Scholar 

  14. Dikranian K, Cohen R, Mac Donald C, Pan Y, Brakefield D, Bayly P et al (2008) Mild traumatic brain injury to the infant mouse causes robust white matter axonal degeneration which precedes apoptotic death of cortical and thalamic neurons. Exp Neurol 211:551–560

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  15. Du H, Guo L, Fang F, Chen D, Sosunov AA, McKhann GM et al (2008) Cyclophilin D deficiency attenuates mitochondrial and neuronal perturbation and ameliorates learning and memory in Alzheimer’s disease. Nat Med 14:1097–1105

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  16. Dziedzic T, Metz I, Dallenga T, Konig FB, Muller S, Stadelmann C et al (2010) Wallerian degeneration: a major component of early axonal pathology in multiple sclerosis. Brain Pathol 20:976–985

    PubMed  Google Scholar 

  17. English AW, Meador W, Carrasco DI (2005) Neurotrophin-4/5 is required for the early growth of regenerating axons in peripheral nerves. Eur J Neurosci 21:2624–2634

    Article  PubMed  Google Scholar 

  18. Ewald AJ, Werb Z, Egeblad M (2011) Monitoring of vital signs for long-term survival of mice under anesthesia. Cold Spring Harb Protoc. pdb prot5563

  19. Feng G, Mellor RH, Bernstein M, Keller-Peck C, Nguyen QT, Wallace M et al (2000) Imaging neuronal subsets in transgenic mice expressing multiple spectral variants of GFP. Neuron 28:41–51

    Article  CAS  PubMed  Google Scholar 

  20. Forte M, Gold BG, Marracci G, Chaudhary P, Basso E, Johnsen D et al (2007) Cyclophilin D inactivation protects axons in experimental autoimmune encephalomyelitis, an animal model of multiple sclerosis. Proc Natl Acad Sci 104:7558–7563

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  21. Giorgio V, von Stockum S, Antoniel M, Fabbro A, Fogolari F, Forte M et al (2013) Dimers of mitochondrial ATP synthase form the permeability transition pore. Proc Natl Acad Sci 110:5887–5892

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  22. Goldstein LE, Fisher AM, Tagge CA, Zhang XL, Velisek L, Sullivan JA et al (2012) Chronic traumatic encephalopathy in blast-exposed military veterans and a blast neurotrauma mouse model. Sci Transl Med 4:134ra160

    Google Scholar 

  23. Greer JE, Hanell A, McGinn MJ, Povlishock JT (2013) Mild traumatic brain injury in the mouse induces axotomy primarily within the axon initial segment. Acta Neuropathol 126:59–74

    Article  PubMed Central  PubMed  Google Scholar 

  24. Greer JE, McGinn MJ, Povlishock JT (2011) Diffuse traumatic axonal injury in the mouse induces atrophy, c-Jun activation, and axonal outgrowth in the axotomized neuronal population. J Neurosci 31:5089–5105

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  25. Hayat MJ, Higgins M (2014) Understanding poisson regression. J Nurs Educ 53:207–215

    Article  PubMed  Google Scholar 

  26. Haynes RL, Billiards SS, Borenstein NS, Volpe JJ, Kinney HC (2008) Diffuse axonal injury in periventricular leukomalacia as determined by apoptotic marker fractin. Pediatr Res 63:656–661

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  27. Hulkower MB, Poliak DB, Rosenbaum SB, Zimmerman ME, Lipton ML (2013) A decade of DTI in traumatic brain injury: 10 years and 100 articles later. AJNR Am J Neuroradiol 34:2064–2074

    Article  CAS  PubMed  Google Scholar 

  28. Ikonomovic MD, Uryu K, Abrahamson EE, Ciallella JR, Trojanowski JQ, Lee VM et al (2004) Alzheimer’s pathology in human temporal cortex surgically excised after severe brain injury. Exp Neurol 190:192–203

    Article  CAS  PubMed  Google Scholar 

  29. Johnson VE, Stewart W, Smith DH (2013) Axonal pathology in traumatic brain injury. Exp Neurol 246:35–43

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  30. Kinnunen KM, Greenwood R, Powell JH, Leech R, Hawkins PC, Bonnelle V et al (2011) White matter damage and cognitive impairment after traumatic brain injury. Brain 134:449–463

    Article  PubMed Central  PubMed  Google Scholar 

  31. Lafrenaye AD, McGinn MJ, Povlishock JT (2012) Increased intracranial pressure after diffuse traumatic brain injury exacerbates neuronal somatic membrane poration but not axonal injury: evidence for primary intracranial pressure-induced neuronal perturbation. J Cereb Blood Flow Metab 32:1919–1932

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  32. Luvisetto S, Basso E, Petronilli V, Bernardi P, Forte M (2008) Enhancement of anxiety, facilitation of avoidance behavior, and occurrence of adult-onset obesity in mice lacking mitochondrial cyclophilin D. Neuroscience 155:585–596

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  33. Marx M, Gunter RH, Hucko W, Radnikow G, Feldmeyer D (2012) Improved biocytin labeling and neuronal 3D reconstruction. Nat Protoc 7:394–407

    Article  CAS  PubMed  Google Scholar 

  34. Mbye LH, Singh IN, Carrico KM, Saatman KE, Hall ED (2009) Comparative neuroprotective effects of cyclosporin A and NIM811, a nonimmunosuppressive cyclosporin A analog, following traumatic brain injury. J Cereb Blood Flow Metab 29:87–97

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  35. Nikic I, Merkler D, Sorbara C, Brinkoetter M, Kreutzfeldt M, Bareyre FM et al (2011) A reversible form of axon damage in experimental autoimmune encephalomyelitis and multiple sclerosis. Nat Med 17:495–499

    Article  CAS  PubMed  Google Scholar 

  36. Okonkwo DO, Povlishock JT (1999) An intrathecal bolus of cyclosporin A before injury preserves mitochondrial integrity and attenuates axonal disruption in traumatic brain injury. J Cereb Blood Flow Metab 19:443–451

    Article  CAS  PubMed  Google Scholar 

  37. Palma E, Tiepolo T, Angelin A, Sabatelli P, Maraldi NM, Basso E et al (2009) Genetic ablation of cyclophilin D rescues mitochondrial defects and prevents muscle apoptosis in collagen VI myopathic mice. Hum Mol Genet 18:2024–2031

    Article  CAS  PubMed  Google Scholar 

  38. Povlishock JT, Katz DI (2005) Update of neuropathology and neurological recovery after traumatic brain injury. J Head Trauma Rehabil 20:76–94

    Article  PubMed  Google Scholar 

  39. Readnower RD, Pandya JD, McEwen ML, Pauly JR, Springer JE, Sullivan PG (2011) Post-injury administration of the mitochondrial permeability transition pore inhibitor, NIM811, is neuroprotective and improves cognition after traumatic brain injury in rats. J Neurotrauma 28:1845–1853

    Article  PubMed Central  PubMed  Google Scholar 

  40. Sherriff FE, Bridges LR, Sivaloganathan S (1994) Early detection of axonal injury after human head trauma using immunocytochemistry for beta-amyloid precursor protein. Acta Neuropathol 87:55–62

    Article  CAS  PubMed  Google Scholar 

  41. Stone JR, Okonkwo DO, Dialo AO, Rubin DG, Mutlu LK, Povlishock JT et al (2004) Impaired axonal transport and altered axolemmal permeability occur in distinct populations of damaged axons following traumatic brain injury. Exp Neurol 190:59–69

    Article  CAS  PubMed  Google Scholar 

  42. Stone JR, Walker SA, Povlishock JT (1999) The visualization of a new class of traumatically injured axons through the use of a modified method of microwave antigen retrieval. Acta Neuropathol 97:335–345

    Article  CAS  PubMed  Google Scholar 

  43. Tang-Schomer MD, Johnson VE, Baas PW, Stewart W, Smith DH (2012) Partial interruption of axonal transport due to microtubule breakage accounts for the formation of periodic varicosities after traumatic axonal injury. Exp Neurol 233:364–372

    Article  PubMed Central  PubMed  Google Scholar 

  44. Tang-Schomer MD, Patel AR, Baas PW, Smith DH (2010) Mechanical breaking of microtubules in axons during dynamic stretch injury underlies delayed elasticity, microtubule disassembly, and axon degeneration. FASEB J 24:1401–1410

    Article  CAS  PubMed Central  PubMed  Google Scholar 

Download references

Acknowledgments

The authors thank Carol Davis, Susan Walker and Jesse Sims for invaluable technical assistance, Scott Henderson and Frances White for sharing their expertise in confocal microscopy, Audrey Lafrenaye, Vishal Patel and Michal Vascak for scientific discussions and comments on this manuscript as well as Michael Forte and Paolo Bernardi for generating and providing the CypD KO mice. This work was funded by NIH grants NS077675 and NS047463.

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

All applicable international, national, and/or institutional guidelines for the care and use of animals were followed.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to John T. Povlishock.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hånell, A., Greer, J.E., McGinn, M.J. et al. Traumatic brain injury-induced axonal phenotypes react differently to treatment. Acta Neuropathol 129, 317–332 (2015). https://doi.org/10.1007/s00401-014-1376-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00401-014-1376-x

Keywords

Navigation