Skip to main content
Log in

Detecting very low levels of long-chain branching in metallocene-catalyzed polyethylenes

  • Original Contribution
  • Published:
Rheologica Acta Aims and scope Submit manuscript

Abstract

The detection of long-chain branches (LCBs) is an issue of significant importance in both basic research and industrial applications, as LCBs provide excellent means to improve the processing behavior, especially in elongation-dominated processing operations. In this article, different methods for the detection of very low amounts of LCBs in metallocene-catalyzed polyethylene are presented and compared with respect to their sensitivity. Depending on the molar mass, the zero shear rate viscosity increase factor η 0/\(\eta_{0}^{\rm lin}\), the steady-state elastic recovery compliance \(J_{e}^{0}\), the complex modulus functions G′(ω) and G″(ω), and the thermorheological complexity were found to be sensitive. In general, the higher the molar mass, the more important the transient quantities become and the easier finding the long-chain branches gets. Although rheology is very sensitive, rheological methods in combination with size exclusion chromatography proved to be the most sensitive combination to detect even very low amounts of LCBs. Especially methods involving the elastic properties (G′(ω), \(J_{\rm e}^{0}\), and J r(t)) react very sensitively, but these are also very distinctly influenced by the molar mass distribution.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Notes

  1. The two main relaxation times in lightly branched LCB-mPE are determined by the molar mass M w. The shorter one (λ 2), scaling with \(M_{\rm w}^{3.6}\), corresponds to the characteristic relaxation time λ of linear PE, while the longer one (λ 1), scaling with \(M_{\rm w}^{5.15}\), is also influenced by the degree of branching and longer than the shorter one by a factor of about 1,000 at M w ≈ 50 kg/mol (Stadler and Münstedt 2009).

  2. To reach the terminal regime fully, a frequency of at least two more likely four decades would have to be measured, which would mean unreasonably long measurement times in the order of months. Besides the limitation of the lowest frequency the rheometer can obtain, also it is very doubtful that the thermal stability would be sufficiently long to allow such a measurement.

  3. Many more reports of the activation energy E a exist, but the determination of E a is also dependent on the laboratory procedure (e.g., Keßner et al. 2009). E a of mHDPE was reported to be in the interval between 22 and 31 kJ/mol by different authors (see references in Stadler et al. (2007b) for an overview). For this reason, only activation energies reported by the same group, using the same methods should be compared.

  4. Alternative models, e.g., by Vega et al. (1998) require individual parameters for each comonomer length.

References

  • Archer LA (1999) Separability criteria for entangled polymer liquids. J Rheol 43(6):1555–1571

    Article  CAS  Google Scholar 

  • Archer LA, Varshney SK (1998) Synthesis and relaxation dynamics of multiarm polybutadiene melts. Macromolecules 31(18):6348–6355

    Article  CAS  Google Scholar 

  • Arikan B, Stadler FJ, Kaschta J, Münstedt H, Kaminsky W (2007) Synthesis and characterization of ethene-graft-ethene-/propene-copolymers. Macromol Rapid Commun 28(14):1472–1478. doi:10.1002/marc.200700161

    Article  CAS  Google Scholar 

  • Auhl D, Stadler FJ, Münstedt H (2012) Comparison of molecular structure and rheological properties of electron-beam- and gamma-irradiated polypropylene. Macromolecules 45:2057–2065

    Article  CAS  Google Scholar 

  • Bach A, Almdal K, Rasmussen HK, Hassager O (2003) Elongational viscosity of narrow molar mass distribution polystyrene. Macromolecules 36(14):5174–5179

    Article  CAS  Google Scholar 

  • Ball RC, Mcleish TCB (1989) Dynamic dilution and the viscosity of star polymer melts. Macromolecules 22(4):1911–1913

    Article  CAS  Google Scholar 

  • Berry GC, Fox TG (1968) The viscosity of polymers and their concentrated solutions. Adv Polym Sci 5:261–357

    Article  Google Scholar 

  • Bubeck RA (2002) Structure–property relationships in metallocene polyethylenes. Mater Sci Eng R 39:1–28

    Article  Google Scholar 

  • Chen X, Stadler FJ, Münstedt H, Larson RG (2010) Method for obtaining tube model parameters for commercial ethene/α-olefin copolymers. J Rheol 54(2):393

    Article  CAS  Google Scholar 

  • Costeux S, Wood-Adams P, Beigzadeh D (2002) Molecular structure of metallocene-catalyzed polyethylene: rheologically relevant representation of branching architecture in single catalyst and blended systems. Macromolecules 35(7):2514–2528

    Article  CAS  Google Scholar 

  • Doi M, Edwards SF (1986) The theory of polymer dynamics. Oxford Press, Oxford

    Google Scholar 

  • Ferry JD (1980) Viscoelastic properties of polymers. Wiley, New York

    Google Scholar 

  • Fetters LJ, Kiss AD, Peareon DS, Quack GF, Vitus FJ (1993) Rheological behavior of star-shaped polymers. Macromolecules 26(4):647–654

    Article  CAS  Google Scholar 

  • Fetters LJ, Lohse DJ, Colby RH (2007) Chain dimensions and entanglement spacings physical properties of polymers, 2nd edn. JE Mark. Springer, Heidelberg

    Google Scholar 

  • Fleury G, Schlatter G, Muller R (2004) Non linear rheology for long chain branching characterization, comparison of two methodologies: fourier transform rheology and relaxation. Rheol Acta 44(2):174–187

    Article  CAS  Google Scholar 

  • Flory PJ (1953) Principles of polymer chemistry. Cornell University Press, Ithaca

    Google Scholar 

  • Fulchiron R, Verney V, Marin G (1993) Determination of the elongational behavior of polypropylene melts form transient shear experiments using Wagner model. J Non-Newton Fluid Mech 48:49–68

    Article  CAS  Google Scholar 

  • Gabriel C (2001) Einfluss der molekularen Struktur auf das viskoelastische Verhalten von Polyethylenschmelzen. Aachen, Shaker-Verlag

    Google Scholar 

  • Gabriel C, Munstedt H (1999) Creep recovery behavior of metallocene linear low-density polyethylenes. Rheol Acta 38(5):393–403

    Article  CAS  Google Scholar 

  • Gabriel C, Münstedt H (2002) Influence of long-chain branches in polyethylenes on linear viscoelastic flow properties in shear. Rheol Acta 41(3):232–244

    Article  CAS  Google Scholar 

  • Gabriel C, Münstedt H (2003) Strain hardening of various polyolefins in uniaxial elongational flow. J Rheol 47(3):619–630

    Article  CAS  Google Scholar 

  • Gabriel C, Kokko E, Löfgren B, Seppälä J, Münstedt H (2002) Analytical and rheological characterization of long-chain branched metallocene-catalyzed ethylene homopolymers. Polymer 43(24):6383–6390

    Article  CAS  Google Scholar 

  • Guzman JD, Schieber JD, Pollard R (2005) A regularization-free method for the calculation of molecular weight distributions from dynamic moduli data. Rheol Acta 44(4):342–351

    Article  CAS  Google Scholar 

  • Hatzikiriakos SG, Ansari M, Sukhadia AM, Rohlfing DC (2011) Rheology of Ziegler-Natta and metallocene high-density polyethylenes: broad molecular weight distribution effects. Rheol Acta 50(1):17–27

    Article  CAS  Google Scholar 

  • Hepperle J, Münstedt H (2006) Rheological properties of branched polystyrenes: nonlinear shear and extensional behavior. Rheol Acta 45(5):717–727

    Article  CAS  Google Scholar 

  • Kaminsky W (2004) The discovery of metallocene catalysts and their present state of the art. J Polym Sci A Polym Chem 42(16):3911–3921

    Article  CAS  Google Scholar 

  • Kaminsky W, Piel C, Scharlach K (2005) Polymerization of ethene and longer chained olefins by metallocene catalysis. Macromol Symp 226(1):25–34

    Article  CAS  Google Scholar 

  • Kapnistos M, Vlassopoulos D, Roovers J, Leal LG (2005) Linear rheology of architecturally complex macromolecules: comb polymers with linear backbones. Macromolecules 38(18):7852–7862

    Article  CAS  Google Scholar 

  • Kapnistos M, Koutalas G, Hadjichristidis N, Roovers J, Lohse DJ, Vlassopoulos D (2006) Linear rheology of comb polymers with star-like backbones: melts and solutions. Rheol Acta 46(2):273–286

    Article  CAS  Google Scholar 

  • Kapnistos M, Kirkwood KM, Ramirez J, Vlassopoulos D, Leal LG (2009) Nonlinear rheology of model comb polymers. J Rheol 53(5):1133–1153

    Article  CAS  Google Scholar 

  • Karjala TP, Sammler RL, Mangnus MA, Hazlitt LG, Johnson MS, Wang JA, Hagen CM, Huang JWL, Reichek KN (2011) Detection of low levels of long-chain branching in polydisperse polyethylene materials. J Appl Polym Sci 119(2):636–646

    Article  CAS  Google Scholar 

  • Kaschta J, Schwarzl FR (1994a) Calculation of discrete retardation spectra from creep data: 2. Analysis of measured creep curves. Rheol Acta 33(6):530–541. doi:10.1007/BF00366337

    Article  CAS  Google Scholar 

  • Kaschta J, Schwarzl FR (1994b) Calculation of discrete retardation spectra from creep data: 1. Method. Rheol Acta 33(6):517–529. doi:10.1007/BF00366336

    Article  CAS  Google Scholar 

  • Kasehagen LJ, Macosko CW (1998) Nonlinear shear and extensional rheology of long-chain randomly branched polybutadiene. J Rheol 42(6):1303–1327

    Article  CAS  Google Scholar 

  • Keßner U, Münstedt H (2009) Thermorheology as a method to analyze long-chain branched polyethylenes. Polymer 51:507–513. doi:10.1016/j.polymer.2009.11.005

    Article  CAS  Google Scholar 

  • Keßner U, Kaschta J, Münstedt H (2009) Determination of method-invariant activation energies of long-chain branched low-density polyethylenes. J Rheol 53(4):1001–1016. doi:10.1122/1.3124682

    Article  CAS  Google Scholar 

  • Keßner U, Münstedt H, Kaschta J, Stadler FJ, Le Duff CS, Drooghaag X (2010) Thermorheological behaviour of various short- and long-chain branched polyethylenes and its correlations with their molecular structure. Macromolecules 43(17):7341–7350. doi:10.1021/ma100705f

    Article  CAS  Google Scholar 

  • Kessner U, Kaschta J, Stadler FJ, Le Duff CcS, Drooghaag X, Münstedt H (2010) Thermorheological behavior of various short- and long-chain branched polyethylenes and their correlations with the molecular structure. Macromolecules 43(17):7341–7350

    Article  CAS  Google Scholar 

  • Klimke K, Parkinson M, Piel C, Kaminsky W, Spiess H-W, Wilhelm M (2006) Optimised polyolefin branch quantification by melt-state 13C NMR spectroscopy. Macromol Chem Phys 207(4):382–395. doi:10.1002/macp.200500422

    Article  CAS  Google Scholar 

  • Kokko E, Malmberg A, Lehmus P, Löfgren B, Seppälä JV (2000) Influence of the catalyst and polymerization conditions on the long-chain branching of metallocene-catalyzed polyethenes. J Polym Sci A Polym Chem 38(2):376–388

    Article  CAS  Google Scholar 

  • Larson RG (1984) A constitutive equation for polymer melts based on partially extending strand convection. J Rheol 28(5):545

    Article  CAS  Google Scholar 

  • Larson RG (1985) Nonlinear shear relaxation modulus for a linear low-density polyethylene. J Rheol 29(6):823–831

    Article  Google Scholar 

  • Laun HM (1987) Orientation of macromolecules and elastic deformations in polymer melts. Influence of molecular structure on the reptation of molecules. Progr Colloid Polym Sci 75:111–139. doi:10.1007/BFb0109414

    Article  Google Scholar 

  • Leal LG, Kirkwood KM, Vlassopoulos D, Driva P, Hadjichristidis N (2009) Stress relaxation of comb polymers with short branches. Macromolecules 42(24):9592–9608

    Article  CAS  Google Scholar 

  • Leblans PJR, Sampers J, Booij HC (1985) The mirror relations and nonlinear viscoelasticity of polymer melts. Rheol Acta 24(2):152–158

    Article  CAS  Google Scholar 

  • Lehmus P, Kokko E, Harkki O, Leino R, Luttikhedde HJG, Nasman JH, Seppala JV (1999) Homo- and copolymerization of ethylene and alpha-olefins over 1- and 2-siloxy- substituted ethylenebis(indenyl)zirconium and ethylenebis (tetrahydroindenyl)zirconium dichlorides. Macromolecules 32(11):3547–3552

    Article  CAS  Google Scholar 

  • Liu CY, He JS, van Ruymbeke E, Keunings R, Bailly C (2006) Evaluation of different methods for the determination of the plateau modulus and the entanglement molecular weight. Polymer 47(13):4461–4479

    Article  CAS  Google Scholar 

  • Liu CY, Keunings R, Bailly C (2007) Direct rheological evidence of monomer density reequilibration for entangled polymer melts. Macromolecules 40(8):2946–2954

    Article  CAS  Google Scholar 

  • Liu JY, Yu W, Zhou CX (2011) Polymer chain topological map as determined by linear viscoelasticity. J Rheol 55(3):545–570

    Article  CAS  Google Scholar 

  • Lohse DJ, Milner ST, Fetters LJ, Xenidou M, Hadjichristidis N, Mendelson RA, Garcia-Franco CA, Lyon MK (2002) Well-defined, model long chain branched polyethylene. 2. Melt rheological behavior. Macromolecules 35(8):3066–3075

    Article  CAS  Google Scholar 

  • Malmberg A, Kokko E, Lehmus P, Löfgren B, Seppälä J (1998) Long-chain branched polyethene polymerized by metallocene catalysts Et[Ind]2ZrCl2/MAO and Et[IndH4]2ZrCl2/ MAO. Macromolecules 31(24):8448–8454

    Article  CAS  Google Scholar 

  • Malmberg A, Liimatta J, Lehtinen A, Lofgren B (1999) Characteristics of long chain branching in ethene polymerization with single site catalysts. Macromolecules 32(20):6687–6696

    Article  CAS  Google Scholar 

  • Malmberg A, Gabriel C, Steffl T, Münstedt H, Lofgren B (2002) Long-chain branching in metallocene-catalyzed polyethylenes investigated by low oscillatory shear and uniaxial extensional rheometry. Macromolecules 35(3):1038–1048

    Article  CAS  Google Scholar 

  • Meissner J (1969) Rheometer for the study of mechanical properties of deformation of plastic melts under definite tensile stress. Rheol Acta 8(1):78–88

    Article  CAS  Google Scholar 

  • Münstedt H (1980) Dependence of the elongational behavior of polystyrene melts on molecular weight and molecular weight distribution. J Rheol 24(6):847–867

    Article  Google Scholar 

  • Münstedt H (1986) Polymerschmelzen Fließverhalten von Stoffen und Stoffgemischen, pp 238–279. W Kulicke. Hüthig&Wepf-Verlag, Basel, Heidelberg, New York

    Google Scholar 

  • Münstedt H, Gabriel C, Auhl D (2003) Long-chain branching and elongational properties of polyethylene and polypropylene melts. Abstr Pap Am Chem Soc 226:U382–U382

    Google Scholar 

  • Neidhöfer T, Sioula S, Hadjichristidis N, Wilhelm M (2004) Distinguishing linear from star-branched polystyrene solutions with Fourier-transform rheology. Macromol Rapid Commun 25(22):1921–1926

    Article  CAS  Google Scholar 

  • Osaki K, Kurata M (1980) Experimental appraisal of the Doi–Edwards theory for polymer rheology based on the data for polystyrene solutions. Macromolecules 13(3):671

    Article  CAS  Google Scholar 

  • Osaki K, Takatori E, Kurata M, Watanabe H, Yoshida H, Kotaka T (1990) Viscoeleastic properties of solutions of star-branched polystyrene. Macromolecules 23(20):4392–4396

    Article  CAS  Google Scholar 

  • Otte T, Pasch H, Macko T, Brull R, Stadler FJ, Kaschta J, Becker F, Buback M (2011) Characterization of branched ultrahigh molar mass polymers by asymmetrical flow field–flow fractionation and size exclusion chromatography. J Chromatogr A 1218(27):4257–4267

    Article  CAS  Google Scholar 

  • Park SJ, Shanbhag S, Larson RG (2005) A hierarchical algorithm for predicting the linear viscoelastic properties of polymer melts with long-chain branching. Rheol Acta 44(3):319–330

    Article  CAS  Google Scholar 

  • Piel C, Stadler FJ, Kaschta J, Rulhoff S, Münstedt H, Kaminsky W (2006a) Structure–property relationships of linear and long-chain branched metallocene high-density polyethylenes and SEC-MALLS. Macromol Chem Phys 207(1):26–38

    Article  CAS  Google Scholar 

  • Piel C, Starck P, Seppälä JV, Kaminsky W (2006b) Thermal and mechanical analysis of metallocene-catalyzed ethylene-a-olefin copolymers: the influence of length and number of the crystallizing side-chains. J Polym Sci A Polym Chem 44(5):1600–1612. doi:10.1002/pola.21265

    Article  CAS  Google Scholar 

  • Plazek DJ, Agarwal PK (1976) The creep behavior of some commercial polystyrenes. In: Proc - Int Conrg Rheol, 7th, pp 488–489

  • Plazek DJ, Echeverria I (2000) Don’t cry for me Charlie Brown, or with compliance comes comprehension. J Rheol 44(4):831–841

    Article  CAS  Google Scholar 

  • Read DJ, Auhl D, Das C, den Doelder J, Kapnistos M, Vittorias I, McLeish TCB (2011) Linking models of polymerization and dynamics to predict branched polymer structure and flow. Science 333(6051):1871–1874

    Article  CAS  Google Scholar 

  • Resch JA, Keßner U, Stadler FJ (2011) Thermorheological behavior of polyethylene—a sensitive probe to molecular structure. Rheol Acta 50(5–6):559–575

    Article  CAS  Google Scholar 

  • Roovers J (1979) Melt rheology of model branched polystyrenes. Polym Prepr 20(2):144–148

    CAS  Google Scholar 

  • Rouse PE Jr (1953) A theory of the linear viscoelastic properties of dilute solutions of coiling polymers. J Chem Phys 21:1272–1280

    Article  CAS  Google Scholar 

  • Shanbhag S (2011) Analytical rheology of branched polymer melts: identifying and resolving degenerate structures. J Rheol 55(1):177–194

    Article  CAS  Google Scholar 

  • Shroff R, Mavridis H (1999) Long-chain-branching index for essentially linear polyethylenes. Macromolecules 32(25):8454–8464

    Article  CAS  Google Scholar 

  • Soares JBP, Hamielec AE (1996) Bivariate chain length and long chain branching distribution for copolymerization of olefins and polyolefin chains containing terminal double-bonds. Macromol Theory Simul 5(3):547–572

    Article  CAS  Google Scholar 

  • Stadler FJ, Münstedt H (2008a) Erratum to “Numerical description of shear viscosity functions of long-chain branched metallocene-catalyzed polyethylenes”. J Non-Newt Fluid Mech 151:227. doi:10.1016/j.jnnfm.2008.05.001

    Article  CAS  Google Scholar 

  • Stadler FJ, Münstedt H (2008b) Terminal viscous and elastic rheological characterization of ethene-/α-olefin copolymers. J Rheol 52(3):697–712. doi:10.1122/1.2892039

    Article  CAS  Google Scholar 

  • Stadler FJ, Münstedt H (2008c) Numerical description of shear viscosity functions of long-chain branched metallocene-catalyzed polyethylenes. J Non-Newton Fluid Mech 151(1–3):129–135

    Article  CAS  Google Scholar 

  • Stadler FJ, Münstedt H (2009) Correlations between the shape of viscosity functions and the molecular structure of long-chain branched polyethylenes. Macromol Mater Eng 294(1):25–34

    Article  CAS  Google Scholar 

  • Stadler FJ, Mahmoudi T (2011) Understanding the effect of short-chain branches by analyzing viscosity functions of linear and short-chain branched polyethylenes. Kor-Austr Rheol J 23(4):185–193

    Article  Google Scholar 

  • Stadler FJ, Karimkhani V (2011) Correlations between terminal rheological quantities and molecular structure in long-chain branched metallocene catalyzed polyethylene. Macromolecules 44(13):5401–5413

    Article  CAS  Google Scholar 

  • Stadler FJ, Piel C, Klimke K, Kaschta J, Parkinson M, Wilhelm M, Kaminsky W, Münstedt H (2006a) Influence of type and content of very long comonomers on long-chain branching of ethene-/α-olefin copolymers. Macromolecules 39(4):1474–1482. doi:10.1021/ma0514018

    Article  CAS  Google Scholar 

  • Stadler FJ, Piel C, Kaminsky W, Münstedt H (2006b) Rheological characterization of long-chain branched polyethylenes and comparison with classical analytical methods. Macromol Symp 236(1):209–218

    Article  CAS  Google Scholar 

  • Stadler FJ, Piel C, Kaschta J, Rulhoff S, Kaminsky W, Münstedt H (2006c) Dependence of the zero shear-rate viscosity and the viscosity function of linear high-density polyethylenes on the mass-average molar mass and polydispersity. Rheol Acta 45(5):755–764

    Article  CAS  Google Scholar 

  • Stadler FJ, Nishioka A, Stange J, Koyama K, Münstedt H (2007a) Comparison of the elongational behavior of various polyolefins in uniaxial and equibiaxial flows. Rheol Acta 46(7):1003–1012

    Article  CAS  Google Scholar 

  • Stadler FJ, Gabriel C, Munstedt H (2007b) Influence of short-chain branching of polyethylenes on the temperature dependence of rheological properties in shear. Macromol Chem Phys 208(22):2449–2454

    Article  CAS  Google Scholar 

  • Stadler FJ, Auhl D, Münstedt H (2008a) Influence of the molecular structure of polyolefins on the damping function in shear. Macromolecules 41(10):3720–3726

    Article  CAS  Google Scholar 

  • Stadler FJ, Kaschta J, Münstedt H (2008b) Thermorheological behavior of various long-chain branched polyethylenes. Macromolecules 41(4):1328–1333

    Article  CAS  Google Scholar 

  • Stadler FJ, Kaschta J, Münstedt H, Becker F, Buback M (2009) Influence of molar mass distribution and long-chain branching on strain hardening of low density polyethylene. Rheol Acta 48(5):479–490

    Article  CAS  Google Scholar 

  • Stadler FJ, Arikan B, Kaschta J, Kaminsky W (2010) Long-chain branches in syndiotactic polypropene induced by vinyl chloride. Macromol Chem Phys 211(13):1472–1481

    Article  CAS  Google Scholar 

  • Stange J, Uhl C, Münstedt H (2005) Rheological behavior of blends from a linear and a long-chain branched polypropylene. J Rheol 49(5):1059–1079

    Article  CAS  Google Scholar 

  • Struglinski MJ, Graessley WW (1985) Effects of polydispersity on the linear viscoelastic properties of entangled polymers. 1. Experimental-observations for binary-mixtures of linear polybutadiene. Macromolecules 18(12):2630–2643

    Article  CAS  Google Scholar 

  • Sun T, Brant P, Chance RR, Graessley WW (2001) Effect of short chain branching on the coil dimensions of polyolefins in dilute solution. Macromolecules 34(19):6812–6820

    Article  CAS  Google Scholar 

  • Tackx P, Tacx JCJF (1998) Chain architecture of LDPE as a function of molar mass using size exclusion chromatography and multi-angle laser light scattering (SEC-MALLS). Polymer 39(14):3109–3113

    Article  CAS  Google Scholar 

  • Takeh A, Worch J, Shanbhag S (2011) Analytical rheology of metallocene-catalyzed polyethylenes. Macromolecules 44(9):3656–3665

    Article  CAS  Google Scholar 

  • Trinkle S, Walter P, Friedrich C (2002) Van Gurp-Palmen Plot II—Classification of long chain branched polymers by their topology. Rheol Acta 41(1–2):103–113

    Article  CAS  Google Scholar 

  • Tuminello WH (1986) Molecular weight and molecular weight distribution from dynamic measurements of polymer melts. Polym Eng Sci 26

  • van Gurp M, Palmen J (1998) Time–temperature superposition for polymeric blends. Rheol Bull 67(1):5–8

    Google Scholar 

  • van Ruymbeke E, Stéphenne V, Daoust D, Godard P, Keunings R, Bailly C (2005) A sensitive method to detect very low levels of long chain branching from the molar mass distribution and linear viscoelastic regime. J Rheol 49(6):1503–1520

    Article  CAS  Google Scholar 

  • Vega JF, Munoz-Escalona A, Santamaria A, Munoz ME, Lafuente P (1996) Comparison of the rheological properties of metallocene-catalyzed and conventional high-density polyethylenes. Macromolecules 29(3):960–965

    Article  CAS  Google Scholar 

  • Vega JF, Santamaria A, Munoz-Escalona A, Lafuente P (1998) Small-amplitude oscillatory shear flow measurements as a tool to detect very low amounts of long chain branching in polyethylenes. Macromolecules 31(11):3639–3647

    Article  CAS  Google Scholar 

  • Vega JF, Fernandez M, Santamaria A, Munoz-Escalona A, Lafuente P (1999) Rheological criteria to characterize metallocene catalyzed polyethylenes. Macromol Chem Phys 200(10):2257–2268

    Article  CAS  Google Scholar 

  • Vinogradov GV, Malkin AY (1966) Rheological properties of polymer melts. J Polym Sci A-2: Polym Phys 4(1):135–154

    Article  CAS  Google Scholar 

  • Vrentas CM, Graessley WW (1982) Study of shear-stress relaxation in well-characterized polymer liquids. J Rheol 26(4):359–371

    Article  CAS  Google Scholar 

  • Wagner MH (1997) Damping functions and nonlinear viscoelasticity—a review. J Non-Newton Fluid Mech 68(2–3):169–171

    Article  CAS  Google Scholar 

  • Wagner MH, Laun HM (1978) Nonlinear shear creep and constrained elastic recovery of a LDPE melt. Rheol Acta 17:138–148

    Article  CAS  Google Scholar 

  • Wagner MH, Rubio P, Bastian H (2001) The molecular stress function model for polydisperse polymer melts with dissipative convective constraint release. J Rheol 45(6):1387–1412

    Article  CAS  Google Scholar 

  • Walter P, Trinkle S, Lilge D, Friedrich C, Mulhaupt R (2001) Long chain branched polypropene prepared by means of propene copolymerization with 1,7-octadiene using MAO-activated rac-Me2Si(2-Me-4-phenyl-Ind)(2)ZrCl2. Macromol Mater Eng 286(5):309–315

    Article  CAS  Google Scholar 

  • Wang WJ, Kharchenko S, Migler K, Zhu SP (2004) Triple-detector GPC characterization and processing behavior of long-chain-branched polyethylene prepared by solution polymerization with constrained geometry catalyst. Polymer 45(19):6495–6505

    Article  CAS  Google Scholar 

  • Wilhelm M, Reinheimer P, Ortseifer M (1999) High sensitivity Fourier-transform rheology. Rheol Acta 38(4):349–356

    Article  CAS  Google Scholar 

  • Wood-Adams PM (2001) The effect of long chain branches on the shear flow behavior of polyethylene. J Rheol 45(1):203–210

    Article  CAS  Google Scholar 

  • Wood-Adams PM, Dealy JM (2000) Using rheological data to determine the branching level in metallocene polyethylenes. Macromolecules 33(20):7481–7488

    Article  CAS  Google Scholar 

  • Wood-Adams PM, Costeux S (2001) Thermorheological behavior of polyethylene: effects of microstructure and long chain branching. Macromolecules 34(18):6281–6290. doi:10.1021/ma0017034

    Article  CAS  Google Scholar 

  • Wood-Adams PM, Dealy JM, deGroot AW, Redwine OD (2000) Effect of molecular structure on the linear viscoelastic behavior of polyethylene. Macromolecules 33(20):7489–7499

    Article  CAS  Google Scholar 

  • Zimm BHM, Stockmayer WH (1949) The dimensions of molecules containing branching and rings. J Chem Phys 17(12):1301–1314

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The author would like to thank the German Research Foundation for the financial support and Prof. Dr. H. Münstedt, Dr. J. Kaschta, and Mrs. I. Herzer (University Erlangen) for the GPC-MALLS measurements. The authors would also like to acknowledge Dr. Christian Piel, Dr. Burçak Arikan, and Prof. Dr. Walter Kaminsky (University Hamburg) for the synthesis of most of the samples used in this article and Dr. Katja Klimke and Dr. Matthew Parkinson of the Max-Planck Institute of Polymer Research in Mainz (group of M. Wilhelm) for the solid-state NMR measurements. The financial support from “Human Resource Development (201040100660)” of the Korea Institute of Energy Technology Evaluation and Planning and from the National Research Foundation (Rheological Characterization of Intelligent Hydrogels) is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Florian J. Stadler.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Stadler, F.J. Detecting very low levels of long-chain branching in metallocene-catalyzed polyethylenes. Rheol Acta 51, 821–840 (2012). https://doi.org/10.1007/s00397-012-0642-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00397-012-0642-x

Keywords

Navigation