Skip to main content
Log in

Preparation of multilayer films using the negative charge of phenylboronic acid and its response to pH change, fructose, and hydrogen peroxide

  • Original Contribution
  • Published:
Colloid and Polymer Science Aims and scope Submit manuscript

Abstract

Functional layer-by-layer (LbL) multilayer films using phenylboronic acid (PBA) have been typically prepared by exploiting the boronate ester bond between PBA and a diol polymer as the driving force. However, we have prepared PBA-containing LbL films through the electrostatic interaction of PBA and polycations, Poly(acrylamide-ran-3-acrylamidephenylboronic acid) (PBA-PAA) and various polycations such as poly(allylamine) hydrochloride (PAH), poly(ethyleneimine) (PEI), poly(diallyldimethylammonium chloride) (PDDA), and polyamidoamine (PAMAM) dendrimer were used. Construction of the multilayer films was influenced by the modification ratio of PBA, the shape of the polycations, solution pH, and the ion concentration. The results showed that the multilayered film was formed by electrostatic interaction. A multilayer film prepared from 10% PBA containing PBA-PAA and PAH showed pH, fructose, and H2O2 responses because these stimuli disturbed the charge balance inside the multilayer films. Such decomposition responses were comparable to that of PBA multilayer films constructed using boronate ester bonds.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Decher G (1997) Fuzzy Nanoassemblies: Toward Layered Polymeric Multicomposites. Science 277:1232–1237

    Article  CAS  Google Scholar 

  2. Inoue H, Sato K, Anzai J (2005). Biomacromolecules 6:27–29

    Article  CAS  PubMed  Google Scholar 

  3. Sato K, Kodama D, Naka Y, Anzai J (2006) Electrochemically Induced Disintegration of Layer-by-Layer-Assembled Thin Films Composed of 2-Iminobiotin-Labeled Poly(ethyleneimine) and Avidin. Biomacromolecules 7:3302–3305

    Article  CAS  PubMed  Google Scholar 

  4. Lvov Y, Ariga K, Ichinose I, Kunitake T (1995). J Chem Soc Chem Commun 22:2313–2314

    Article  Google Scholar 

  5. Sato K, Imoto Y, Sugama J, Seki S, Inoue H, Odagiri T, Hoshi T, Anzai J (2005) Sugar-Induced Disintegration of Layer-by-Layer Assemblies Composed of Concanavalin A and Glycogen. Langmuir 21:797–799

    Article  CAS  PubMed  Google Scholar 

  6. Tomita S, Sato K, Anzai J (2008). J Colloid Interface Sci 326:35–40

    Article  CAS  PubMed  Google Scholar 

  7. Rusling JF, Hvastkovs EG, Hulla DO, Schenkman JB (2008) Biochemical applications of ultrathin films of enzymes, polyions and DNA. Chem Commun:141–154

  8. Takahashi S, Sato K, Anzai J (2012) Layer-by-layer construction of protein architectures through avidin–biotin and lectin–sugar interactions for biosensor applications. Anal Bioanal Chem 402:1749–1758

    Article  CAS  PubMed  Google Scholar 

  9. Donath E, Sukhorukov GB, Caruso F, Davis SA, Möhwald H (1998). Angew Chem Int Ed 16:2202–2205

    Google Scholar 

  10. Sato K, Anzai J (2006) Fluorometric determination of sugars using fluorescein-labeled concanavalin A–glycogen conjugates. Anal Bioanal Chem 384:1297–1301

    Article  CAS  PubMed  Google Scholar 

  11. Delcea M, Möhwald H, Skirtach AG (2011) Stimuli-responsive LbL capsules and nanoshells for drug delivery. Adv Drug Deliver Rev 63:730–747

    Article  CAS  Google Scholar 

  12. Sato K, Yoshida K, Takahashi S, Anzai J (2011) pH- and sugar-sensitive layer-by-layer films and microcapsules for drug delivery. Adv Drug Deliver Rev 63:809–821

    Article  CAS  Google Scholar 

  13. Prevot M, Déjugnat C, Möhwald H, Sukhorukov GB (2006) Behavior of Temperature-Sensitive PNIPAM Confined in Polyelectrolyte Capsules. Chem Phys Chem 7:2497–2502

    Article  CAS  PubMed  Google Scholar 

  14. Selin V, Ankner JF, Sukhishvili SA (2015) Diffusional Response of Layer-by-Layer Assembled Polyelectrolyte Chains to Salt Annealing. Macromolecules 48:3983–3990

    Article  CAS  Google Scholar 

  15. Zhang X, Guan Y, Zhang Y (2012) Dynamically bonded layer-by-layer films for self-regulated insulin release. J Mater Chem 22:16299–16305

    Article  CAS  Google Scholar 

  16. Sato K, Shimizu S, Awaji K, Hitomi O, Anzai J (2018). J Colloid Interface Sci 510:302–307

    Article  CAS  PubMed  Google Scholar 

  17. Ding Z, Guan Y, Zhang Y, Zhu XX (2009) Layer-by-layer multilayer films linked with reversible boronate ester bonds with glucose-sensitivity under physiological conditions. Soft Matter 5:2302–2309

    Article  CAS  Google Scholar 

  18. Takei C, Ohno Y, Seki T, Miki R (2018) Toshinobu Seki, Y. Egawa. Chem Pharm Bull 66:368–374

    Article  PubMed  Google Scholar 

  19. Springsteen G, Wang B (2002) A detailed examination of boronic acid–diol complexation. Tetrahedron 58:5291–5300

    Article  CAS  Google Scholar 

  20. Nishiyabu R, Kobayashi H, Kubo Y (2012) Dansyl-containing boronate hydrogel film as fluorescent chemosensor of copper ions in water. RSC Adv 2:6555–6561

    Article  CAS  Google Scholar 

  21. Rajkumar R, Warsink A, Möhwald H, Scheller FW, Katterle M (2007). Biosens Bioelectron 22:3318–3325

    Article  CAS  PubMed  Google Scholar 

  22. Pogorelova SP, Zayats M, Bourenko T, Kharitonov AB, Lioubashevski O, Katz E, Willner I (2003) Analysis of NAD(P)+/NAD(P)H Cofactors by Imprinted Polymer Membranes Associated with Ion-Sensitive Field-Effect Transistor Devices and Au−Quartz Crystals. Anal Chem 75:509–517

    Article  PubMed  Google Scholar 

  23. Lapeyre V, Gosse I, Chevreux S, Ravaine V (2006) Monodispersed Glucose-Responsive Microgels Operating at Physiological Salinity. Biomacromolecules 7:3356–3363

    Article  CAS  PubMed  Google Scholar 

  24. Fahmi MZ, Chen J, Huang C, Linge Y, Chang J (2015). J Mater Chem B 3:5532–5543

    Article  CAS  Google Scholar 

  25. B. G. De Geest, A. M. Jonas, J. Demeester, .S. C. De Smedt, Langmuir, 22 (2006) 5070–5074, Glucose-Responsive Polyelectrolyte Capsules

    Article  CAS  PubMed  Google Scholar 

  26. Lapeyre V, Renaudie N, Dechezelles J, Saadaoui H, Ravaine S, Ravaine V (2009) Multiresponsive Hybrid Microgels and Hollow Capsules with a Layered Structure. Langmuir 25:4659–4667

    Article  CAS  PubMed  Google Scholar 

  27. Shi D, Ran M, Zhang L, Huang H, Li X, Chen M, Akashi M (2016) Fabrication of Biobased Polyelectrolyte Capsules and Their Application for Glucose-Triggered Insulin Delivery. ACS Appl Mater Interfaces 8:13688–13697

    Article  CAS  PubMed  Google Scholar 

  28. Zhao Y, Yuan Q, Li C, Guan Y, Zhang Y (2015) Dynamic Layer-by-Layer Films: A Platform for Zero-Order Release. Biomacromolecules 16:2032–2039

    Article  CAS  PubMed  Google Scholar 

  29. Watahiki R, Sato K, Niina S, Suwa K, Egawa Y, Seki T, Anzai J (2014). J Mater Chem B 2:5809–5817

    Article  CAS  Google Scholar 

  30. Shi D, Ran M, Huang H, Zhang L, Li X, Chen M, Akashi M (2016) Preparation of glucose responsive polyelectrolyte capsules with shell crosslinking via the layer-by-layer technique and sustained release of insulin. Polym Chem 7:6779–6788

    Article  CAS  Google Scholar 

  31. Sato K, Kodama D, Endo Y, Yoshida K, Anzai J (2010) Sugar-Sensitive Polyelectrolyte Microcapsules Containing Insulin. Kobunshi Ronbunshu 67:544–548

    Article  CAS  Google Scholar 

  32. Levy T, De’jugnat C, Sukhorukov GB (2008). Adv Funct Mater 18:1586–1594

    Article  CAS  Google Scholar 

  33. Li S, Davis EN, Anderson J, Lin Q, Wang Q (2009) Development of Boronic Acid Grafted Random Copolymer Sensing Fluid for Continuous Glucose Monitoring. Biomacromolecules 10:113–118

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Du X, Jiang G, Li L, Liu Y, Chen H, Huang Q (2015) Photo-induced synthesis glucose-responsive carriers for controlled release of insulin in vitro. Colloid Polym Sci 293:2129–2135

    Article  CAS  Google Scholar 

  35. Kawanishi T, Romey MA, Zhu PC, Holody MZ, Shinkai S (2004) A Study of Boronic Acid Based Fluorescent Glucose Sensors. J Fluoresc 14:499–512

    Article  CAS  PubMed  Google Scholar 

  36. Simon J, Salzbrunn S, Prakash GKS, Petasis NA, Olah GA (2001) Regioselective Conversion of Arylboronic Acids to Phenols and Subsequent Coupling to Symmetrical Diaryl Ethers. J Org Chem 66:633–634

    Article  CAS  PubMed  Google Scholar 

  37. Seno M, Yoshida K, Sato K, Anzai J (2016) pH- and sugar-sensitive multilayer films composed of phenylboronic acid (PBA)-modified poly(allylamine hydrochloride) (PBA-PAH) and poly(vinyl alcohol) (PVA): A significant effect of PBA content on the film stability. Mater Sci Eng C 62:474–479

    Article  CAS  Google Scholar 

  38. Saleem M, Wang L, Yu H, Zain-ul-Abdin M, Akram R, Ullah S (2017). Colloid Polym Sci 295:995–1006

    Article  CAS  Google Scholar 

  39. Sato K, Takahashi M, Ito M, Abe E, Anzai J (2014) H2O2-Induced Decomposition of Layer-by-Layer Films Consisting of Phenylboronic Acid-Bearing Poly(allylamine) and Poly(vinyl alcohol). Langmuir 30:9247–9250

    Article  CAS  PubMed  Google Scholar 

  40. Sato K, Awaji K, Ito M, Anzai J (2017) Preparation of H2O2-induced poly (amidoamine) dendrimer-release multilayer films. Colloid Polym Sci 295:877–882

    Article  CAS  Google Scholar 

  41. de G Lux C, Joshi-Barr S, Nguyen T, Mahmoud E, Schopf E, Fomina N, Almutairi A (2012). J Am Chem Soc 135:15758–15764

    Google Scholar 

  42. Sato K, Iwasaki M, Oide Y, Anzai J (2017) Preparation of a PVA/PBA dispersion and its response to glucose, fructose, and hydrogen peroxide. Colloid Polym Sci 295:1521–1525

    Article  CAS  Google Scholar 

  43. Lewis GG, DiTucci MJ, Phillips ST (2012) Quantifying Analytes in Paper-Based Microfluidic Devices Without Using External Electronic Readers. Angew Chem Int Ed 51:12707–12710

    Article  CAS  Google Scholar 

  44. Dickinson BC, Huynh C, Chang CJ (2010) A Palette of Fluorescent Probes with Varying Emission Colors for Imaging Hydrogen Peroxide Signaling in Living Cells. J Am Chem Soc 132:5906–5915

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Nonaka H, An Q, Sugihara F, Doura T, Tsuchiya A, Yoshida Y, Sando S (2015) Phenylboronic Acid-based <sup>19</sup>F MRI Probe for the Detection and Imaging of Hydrogen Peroxide Utilizing Its Large Chemical-Shift Change. Anal Sci 31:331–335

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

The authors appreciate financial support in the form of Grants-in-Aid for Scientific Research (Nos. 16K08189 and 18 K06791) from the Japan Society for the Promotion of Science (JSPS).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Katsuhiko Sato.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Oide, Y., Iwasaki, M., Yoshida, K. et al. Preparation of multilayer films using the negative charge of phenylboronic acid and its response to pH change, fructose, and hydrogen peroxide. Colloid Polym Sci 296, 1573–1580 (2018). https://doi.org/10.1007/s00396-018-4380-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00396-018-4380-1

Keywords

Navigation