Skip to main content
Log in

Rheological properties of emulsions formed by polymer solutions and modified by nanoparticles

  • Original Contribution
  • Published:
Colloid and Polymer Science Aims and scope Submit manuscript

Abstract

Rheological properties of concentrated oil-in-water emulsions containing dissolving polymers in both phases, partially playing a role of surfactants, were studied. Additionally, nanoparticles were added to the aqueous phase, and they had an influence on rheological behavior and emulsion stability. The main peculiarity of the objects is the superposition of viscoelastic properties related to the presence of polymers and to interface interactions. Emulsion viscoelasticity were characterized by three separate relaxation modes with very different relaxation times. They reflect relaxation processes of polymeric origin inside both phases, which are dilute polymer solutions, and elasticity of interface layers. Presence of nanoparticles strongly affects the rheological properties leading to the increase in the apparent viscosity, elastic modulus, and yield stress of emulsions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Binks BP (2002) Particles as surfactants—similarities and differences. Curr Opin Colloid Interface Sci 7:21–41

    Article  CAS  Google Scholar 

  2. Binks BP, Whytby CP (2005) Nanoparticle silica-stabilised oil-in-water emulsions: improving emulsion stability. Colloid Surf A 253:105–115

    Article  CAS  Google Scholar 

  3. Binks BP, Desforges A, Duff DG (2007) Synergistic stabilization of emulsions by a mixture of surface-active nanoparticles and surfactant. Langmuir 23:1098–1106

    Article  CAS  Google Scholar 

  4. Wolf B, Lam S, Kirkland M, Frith WJ (2007) Shear thickening of an emulsion stabilized with hydrophilic silica particles. J Rheol 51:465–478

    Article  CAS  Google Scholar 

  5. Ashbya NP, Binks BP (2000) Pickering emulsions stabilised by Laponite clay particles. Phys Chem Chem Phys 2:5640–5646

    Article  Google Scholar 

  6. Melle S, Lask M, Fuller GG (2005) Pickering emulsions with controllable stability. Langmuir 21:2158–2162

    Article  CAS  Google Scholar 

  7. Wang J, Yang F, Tan J, Liu G, Xu J, Sun D (2010) Pickering emulsions stabilized by a lipophilic surfactant and hydrophilic platelike particles. Langmuir 26:5397–5404

    Article  CAS  Google Scholar 

  8. Aveyard R, Binks BP, Clint JH (2003) Emulsions stabilised solely by colloidal particles. Adv Colloid Interface Sci 100–102:503–546

    Article  Google Scholar 

  9. Okada M, Maeda H, Fujii S, Nakamura Y, Furuzono T (2012) Formation of Pickering emulsions stabilized via interaction between nanoparticles dispersed in aqueous phase and polymer end groups dissolved in oil phase. Langmuir 28:9405–9412

    Article  CAS  Google Scholar 

  10. Chang SA, Gray DG (1978) The surface tension of aqueous hydroxypropyl cellulose solutions. J Colloid Interface Sci 67:255–265

    Article  CAS  Google Scholar 

  11. Mezdoura S, Cuveliera G, Cashb MJ, Michon C (2007) Surface rheological properties of hydroxypropyl cellulose at air–water interface. Food Hydrocoll 21:776–781

    Article  Google Scholar 

  12. McNally EJ, Zografi G (1990) Spread and adsorbed monolayers of hydroxypropyl cellulose and hydroxyethyl cellulose at the air–water interface. J Colloid Interface Sci 138:61–68

    Article  CAS  Google Scholar 

  13. Yarusso DJ, Rivard RJ, Ma J (1999) Properties of polyisoprene-based pressure sensitive adhesives crosslinked by electron beam irradiation. J Adhesion 69:201–215

    Article  CAS  Google Scholar 

  14. Gibert FX, Marin G, Derail C, Allal A, Lechat J (2003) Rheological properties of hot melt pressure-sensitive adhesives based on styrene–isoprene copolymers. Part 1: a rheological model for [sis-si] formulations. J Adhes 79:825–852

    Article  CAS  Google Scholar 

  15. Sasaki M, Fujita K, Adachi M, Fujii S, Nakamura Y, Urahama Y (2008) The effect of tackifier on phase structure and peel adhesion of a triblock copolymer pressure-sensitive adhesive. Int J Adhes Adhes 28:372–381

    Article  CAS  Google Scholar 

  16. Borodulina T, Bermesheva E, Smirnova N, Ilyin S, Brantseva T, Antonov S (2014) Adhesive properties of liquid crystalline hydroxypropyl cellulose–propylene glycol blends. J Adhes Sci Technol 28:1629–1643

    Article  CAS  Google Scholar 

  17. Class JB, Chu SG (1985) The viscoelastic properties of rubber–resin blends. I. The effect of resin structure. J Appl Polym Sci 30:805–814

    Article  CAS  Google Scholar 

  18. Tobing S, Klein A, Sperling LH, Petrasko B (2001) Effect of network morphology on adhesive performance in emulsion blends of acrylic pressure sensitive adhesives. J Appl Polym Sci 81:2109–2117

    Article  CAS  Google Scholar 

  19. Leong YC, Lee LMS, Gan SN (2003) The viscoelastic properties of natural rubber pressure‐sensitive adhesive using acrylic resin as a tackifier. J Appl Polym Sci 88:2118–2123

    Article  CAS  Google Scholar 

  20. Tan HS, Pfister WR (1999) Pressure-sensitive adhesives for transdermal drug delivery systems. Pharm Sci Technol Today 2:60–69

    Article  CAS  Google Scholar 

  21. Valenta C, Auner BG (2004) The use of polymers for dermal and transdermal delivery. Eur J Pharm Biopharm 58:279–289

    Article  CAS  Google Scholar 

  22. Krägel J, Derkatch SR (2010) Interfacial shear rheology. Curr Opin Colloid Interface Sci 15:246–255

    Article  Google Scholar 

  23. Erni P, Fischer P, Windhab EJ, Kuznezov V, Stettin H, Läuger J (2003) Stress- and strain-controlled measurements of interfacial shear viscosity and viscoelasticity at liquid/liquid and gas/liquid interfaces. Rev Sci Instr 74:4916–4924

    Article  CAS  Google Scholar 

  24. Ilyin S, Kulichikhin V, Malkin A (2014) Characterization of material viscoelasticity at large deformations. Appl Rheol 24:13653

    Google Scholar 

  25. Møller PCF, Fall A, Bonn D (2009) Origin of apparent viscosity in yield stress fluids below yielding. EPL 87:38004

    Article  Google Scholar 

  26. Masalova I, Taylor M, Kharatiyan E, Malkin AY (2005) Rheopexy in highly concentrated emulsions. J Rheol 49:839–849

    Article  CAS  Google Scholar 

  27. Malkin A, Ilyin S, Roumyantseva T, Kulichikhin V (2013) Rheological evidence of gel formation in dilute poly (acrylonitrile) solutions. Macromolecules 46:257–266

    Article  CAS  Google Scholar 

  28. Coussot P, Nguyen QD, Huynh HT, Bonn D (2002) Viscosity bifurcation in thixotropic, yielding fluids. J Rheol 46:573–589

    Article  CAS  Google Scholar 

  29. Malkin A, Ilyin S, Semakov A, Kulichikhin V (2012) Viscoplasticity and stratified flow of colloid suspensions. Soft Matter 8:2607–2617

    Article  CAS  Google Scholar 

  30. Ilyin SO, Pupchenkov GS, Krasheninnikov AI, Kulichikhin VG, Malkin AY (2013) Rheology of aqueous poly (ethylene oxide) solutions reinforced with bentonite clay. Colloid J 75:267–273

    Article  CAS  Google Scholar 

  31. Berret JF, Porte G, Decruppe JP (1997) Inhomogeneous shear flows of wormlike micelles: mA master dynamic phase diagram. Phys Rev E 55:1668

    Article  CAS  Google Scholar 

  32. Britten MM, Callaghan TP (1997) Two-phase shear band structures at uniform stress. Phys Rev Lett 78:4930

    Article  Google Scholar 

  33. Salmon JB, Manneville S, Colin A (2003) Shear banding in a lyotropic lamellar phase. I. Time-averaged velocity profiles. Phys Rev E 68:051503

    Article  Google Scholar 

  34. Olmsted PD (2008) Perspectives on shear banding in complex fluids. Rheol Acta 47:283–300

    Article  CAS  Google Scholar 

  35. Dhont JKG, Briels WJ (2008) Gradient and vorticity banding. Rheol Acta 47:257–281

    Article  CAS  Google Scholar 

  36. Ilyin S, Roumyantseva T, Spiridonova V, Semakov A, Frenkin E, Malkin A, Kulichikhin V (2011) Gels of cysteine/Ag-based dilute colloid systems and their rheological properties. Soft Matter 7:9090–9103

    Article  CAS  Google Scholar 

  37. Derkach SR (2009) Rheology of emulsions. Adv Colloid Interface Sci 151:1–23

    Article  CAS  Google Scholar 

  38. Princen HM (1986) Osmotic pressure of foams and highly concentrated emulsions. I. Theoretical considerations. Langmuir 2:519–524

    Article  CAS  Google Scholar 

  39. Mason TG, Lacasse MD, Grest GS, Levine D, Bibette J, Weitz DA (1997) Osmotic pressure and viscoelastic shear moduli of concentrated emulsions. Phys Rev E 56:2150–3166

    Article  Google Scholar 

  40. Foudazi R, Masalova I, Malkin AY (2010) The role of interdroplet interaction in the physics of highly concentrated emulsions. Colloid J 72:74–92

    Article  CAS  Google Scholar 

  41. Kragel J, Derkatch SR (2009) Interfacial shear rheology—an overview of measuring techniques and their applications. In: Miller R, Liggieri L (eds) Interfacial rheology. Brill Publ, Leiden, pp 372–428

    Chapter  Google Scholar 

  42. Fainerman VB, Möbius D, Miller R (2001) Surfactants: chemistry, interfacial properties, applications. Elsevier, Amsterdam

    Google Scholar 

Download references

Acknowledgment

The authors are grateful to the Russian Scientific Foundation (agreement #14-23-00003 of August 7, 2014) for financial support of the work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. O. Ilyin.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ilyin, S.O., Kulichikhin, V.G. & Malkin, A.Y. Rheological properties of emulsions formed by polymer solutions and modified by nanoparticles. Colloid Polym Sci 293, 1647–1654 (2015). https://doi.org/10.1007/s00396-015-3543-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00396-015-3543-6

Keywords

Navigation