Skip to main content

Advertisement

Log in

17β-Estradiol-induced interaction of estrogen receptor α and human atrial essential myosin light chain modulates cardiac contractile function

  • Original Contribution
  • Published:
Basic Research in Cardiology Aims and scope Submit manuscript

Abstract

Chronic increased workload of the human heart causes ventricular hypertrophy, re-expression of the atrial essential myosin light chain (hALC-1), and improved contractile function. Although hALC-1 is an important positive inotropic regulator of the human heart, little is known about its regulation. Therefore, we investigated the role of the sex hormone 17β-estradiol (E2) on hALC-1 gene expression, the underlying molecular mechanisms, and the impact of this regulatory process on cardiac contractile function. We showed that E2 attenuated hALC-1 expression in human atrial tissues of both sexes and in human ventricular AC16 cells. E2 induced the nuclear translocation of estrogen receptor alpha (ERα) and hALC-1 in AC16 cells, where they cooperatively regulate the transcriptional activity of hALC-1 gene promoter. E2-activated ERα required the estrogen response element (ERE) motif within the hALC-1 gene promoter to reduce its transcriptional activity (vehicle: 15.55 ± 4.80 vs. E2: 6.51 ± 3.69; ~2 fold). This inhibitory effect was potentiated in the presence of hALC-1 (vehicle: 11.13 ± 3.66 vs. E2: 2.18 ± 1.10; ~5 fold), and thus, hALC-1 acts as a co-repressor of ERα-mediated transcription. Yeast two-hybrid screening of a human heart cDNA library revealed that ERα interacts physically with hALC-1 in the presence of E2. This interaction was confirmed by Co-Immunoprecipitation and immunofluorescence in human atrium. As a further novel effect, we showed that chronic E2-treatment of adult mouse cardiomyocytes overexpressing hALC-1 resulted in reduced cell-shortening amplitude and twitching kinetics of these cells independent of Ca2+ activation levels. Together, our data showed that the expression of hALC-1 gene is, at least partly, regulated by E2/ERα, while hALC-1 acts as a co-repressor. The inotropic effect of hALC-1 overexpression in cardiomyocytes can be significantly repressed by E2.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Abbreviations

aa:

Amino acid

Adv:

Adenovirus

ALC-1 (Myl4):

Atrial essential myosin light chain 4

β-Gal:

β-galactosidase

Co-IP:

Co-immunoprecipitation

DAPI:

4′,6-Diamidin-2-phenylindol

E2:

(17β-estradiol, estrogen)

EF:

Ejection fraction

ELC:

Essential myosin light chain

ERE:

Estrogen response element

ERα:

Estrogen receptor alpha

Eth:

Ethanol

FL:

Full length

IF:

Immunofluorescence

LUC:

Luciferase

MOI:

Multiplicity of infection

MyHC:

Myosin heavy chain

NPPA:

Atrial natriuretic peptide precursor A

VLC-1 (Myl3):

Ventricular essential myosin light chain

Y2H:

Yeast two-hybrid assay

References

  1. Abdelaziz AI, Pagel I, Schlegel WP, Kott M, Monti J, Haase H, Morano I (2005) Human atrial myosin light chain 1 expression attenuates heart failure. Adv Exp Med Biol 565:283–292. doi:10.1007/0-387-24990-7_21

    Article  CAS  PubMed  Google Scholar 

  2. Abdelaziz AI, Segaric J, Bartsch H, Petzhold D, Schlegel WP, Kott M, Seefeldt I, Klose J, Bader M, Haase H, Morano I (2004) Functional characterization of the human atrial essential myosin light chain (hALC-1) in a transgenic rat model. J Mol Med (Berl) 82:265–274. doi:10.1007/s00109-004-0525-4

    Article  CAS  Google Scholar 

  3. Auckland LM, Lambert SJ, Cummins P (1986) Cardiac myosin light and heavy chain isotypes in tetralogy of Fallot. Cardiovasc Res 20:828–836. doi:10.1093/cvr/20.11.828

    Article  CAS  PubMed  Google Scholar 

  4. Babiker FA, Lips D, Meyer R, Delvaux E, Zandberg P, Janssen B, van Eys G, Grohe C, Doevendans PA (2006) Estrogen receptor beta protects the murine heart against left ventricular hypertrophy. Arterioscler Thromb Vasc Biol 26:1524–1530. doi:10.1161/01.ATV.0000223344.11128.23

    Article  CAS  PubMed  Google Scholar 

  5. Barletta F, Wong CW, McNally C, Komm BS, Katzenellenbogen B, Cheskis BJ (2004) Characterization of the interactions of estrogen receptor and MNAR in the activation of cSrc. Mol Endocrinol 18:1096–1108. doi:10.1210/me.2003-0335

    Article  CAS  PubMed  Google Scholar 

  6. Barton PJ, Buckingham ME (1985) The myosin alkali light chain proteins and their genes. Biochem J 231:249–261. doi:10.1042/bj2310249

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Berry M, Nunez AM, Chambon P (1989) Estrogen-responsive element of the human pS2 gene is an imperfectly palindromic sequence. Proc Natl Acad Sci USA 86:1218–1222

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Brann DW, Zhang QG, Wang RM, Mahesh VB, Vadlamudi RK (2008) PELP1–a novel estrogen receptor-interacting protein. Mol Cell Endocrinol 290:2–7. doi:10.1016/j.mce.2008.04.019

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Catala F, Wanner R, Barton P, Cohen A, Wright W, Buckingham M (1995) A skeletal muscle-specific enhancer regulated by factors binding to E and CArG boxes is present in the promoter of the mouse myosin light-chain 1A gene. Mol Cell Biol 15:4585–4596. doi:10.1128/MCB.15.8.4585

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Cummins P, Price KM, Littler WA (1980) Foetal myosin light chain in human ventricle. J Muscle Res Cell Motil 1:357–366

    Article  CAS  PubMed  Google Scholar 

  11. Davidson MM, Nesti C, Palenzuela L, Walker WF, Hernandez E, Protas L, Hirano M, Isaac ND (2005) Novel cell lines derived from adult human ventricular cardiomyocytes. J Mol Cell Cardiol 39:133–147. doi:10.1016/j.yjmcc.2005.03.003

    Article  CAS  PubMed  Google Scholar 

  12. Edwards DP (2005) Regulation of signal transduction pathways by estrogen and progesterone. Annu Rev Physiol 67:335–376. doi:10.1146/annurev.physiol.67.040403.120151

    Article  CAS  PubMed  Google Scholar 

  13. Fodor WL, Darras B, Seharaseyon J, Falkenthal S, Francke U, Vanin EF (1989) Human ventricular/slow twitch myosin alkali light chain gene characterization, sequence, and chromosomal location. J Biol Chem 264:2143–2149

    CAS  PubMed  Google Scholar 

  14. Glass CK, Rosenfeld MG (2000) The coregulator exchange in transcriptional functions of nuclear receptors. Genes Dev 14:121–141. doi:10.1101/gad.14.2.121

    CAS  PubMed  Google Scholar 

  15. Grohe C, Kahlert S, Lobbert K, Stimpel M, Karas RH, Vetter H, Neyses L (1997) Cardiac myocytes and fibroblasts contain functional estrogen receptors. FEBS Lett 416:107–112. doi:10.1016/S0014-5793(97)01179-4

    Article  CAS  PubMed  Google Scholar 

  16. Haase H, Dobbernack G, Tunnemann G, Karczewski P, Cardoso C, Petzhold D, Schlegel WP, Lutter S, Pierschalek P, Behlke J, Morano I (2006) Minigenes encoding N-terminal domains of human cardiac myosin light chain-1 improve heart function of transgenic rats. FASEB J 20:865–873. doi:10.1096/fj.05-5414com

    Article  CAS  PubMed  Google Scholar 

  17. Kararigas G, Becher E, Mahmoodzadeh S, Knosalla C, Hetzer R, Regitz-Zagrosek V (2010) Sex-specific modification of progesterone receptor expression by 17beta-oestradiol in human cardiac tissues. Biol Sex Differ 1:2. doi:10.1186/2042-6410-1-2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Kararigas G, Bito V, Tinel H, Becher E, Baczko I, Knosalla C, Albrecht-Kupper B, Sipido KR, Regitz-Zagrosek V (2012) Transcriptome characterization of estrogen-treated human myocardium identifies myosin regulatory light chain interacting protein as a sex-specific element influencing contractile function. J Am Coll Cardiol 59:410–417. doi:10.1016/j.jacc.2011.09.054

    Article  CAS  PubMed  Google Scholar 

  19. Lamounier-Zepter V, Ehrhart-Bornstein M, Karczewski P, Haase H, Bornstein SR, Morano I (2006) Human adipocytes attenuate cardiomyocyte contraction: characterization of an adipocyte-derived negative inotropic activity. FASEB J 20:1653–1659. doi:10.1096/fj.05-5436com

    Article  CAS  PubMed  Google Scholar 

  20. Lonard DM, Lanz RB, O’Malley BW (2007) Nuclear receptor coregulators and human disease. Endocr Rev 28:575–587. doi:10.1210/er.2007-0012

    Article  CAS  PubMed  Google Scholar 

  21. Lowey S, Saraswat LD, Liu H, Volkmann N, Hanein D (2007) Evidence for an interaction between the SH3 domain and the N-terminal extension of the essential light chain in class II myosins. J Mol Biol 371:902–913. doi:10.1016/j.jmb.2007.05.080

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Mahmoodzadeh S, Dworatzek E, Fritschka S, Pham TH, Regitz-Zagrosek V (2010) 17beta-Estradiol inhibits matrix metalloproteinase-2 transcription via MAP kinase in fibroblasts. Cardiovasc Res 85:719–728. doi:10.1093/cvr/cvp350

    Article  CAS  PubMed  Google Scholar 

  23. Mahmoodzadeh S, Fritschka S, Dworatzek E, Pham TH, Becher E, Kuehne A, Davidson MM, Regitz-Zagrosek V (2009) Nuclear factor-kappaB regulates estrogen receptor-alpha transcription in the human heart. J Biol Chem 284:24705–24714. doi:10.1074/jbc.M109.000463

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Mahmoodzadeh S, Pham TH, Kuehne A, Fielitz B, Dworatzek E, Kararigas G, Petrov G, Davidson MM, Regitz-Zagrosek V (2012) 17beta-Estradiol-induced interaction of ERalpha with NPPA regulates gene expression in cardiomyocytes. Cardiovasc Res 96:411–421. doi:10.1093/cvr/cvs281

    Article  CAS  PubMed  Google Scholar 

  25. Mahmoodzadeh S, Eder S, Nordmeyer J, Ehler E, Huber O, Martus P, Weiske J, Pregla R, Hetzer R, Regitz-Zagrosek V (2006) Estrogen receptor alpha up-regulation and redistribution in human heart failure. FASEB J 20:926–934. doi:10.1096/fj.05-5148com

    Article  CAS  PubMed  Google Scholar 

  26. Mendelsohn ME, Karas RH (2005) Molecular and cellular basis of cardiovascular gender differences. Science 308:1583–1587. doi:10.1126/science.1112062

    Article  CAS  PubMed  Google Scholar 

  27. Morano I (1999) Tuning the human heart molecular motors by myosin light chains. J Mol Med (Berl) 77:544–555

    Article  CAS  Google Scholar 

  28. Morano I, Haase H (1997) Different actin affinities of human cardiac essential myosin light chain isoforms. FEBS Lett 408:71–74. doi:10.1016/S0014-5793(97)00390-6

    Article  CAS  PubMed  Google Scholar 

  29. Morano I, Hadicke K, Haase H, Bohm M, Erdmann E, Schaub MC (1997) Changes in essential myosin light chain isoform expression provide a molecular basis for isometric force regulation in the failing human heart. J Mol Cell Cardiol 29:1177–1187. doi:10.1006/jmcc.1996.0353

    Article  CAS  PubMed  Google Scholar 

  30. Morano M, Zacharzowski U, Maier M, Lange PE, Alexi-Meskishvili V, Haase H, Morano I (1996) Regulation of human heart contractility by essential myosin light chain isoforms. J Clin Invest 98:467–473. doi:10.1172/JCI118813

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Murphy E, Steenbergen C (2014) Estrogen regulation of protein expression and signaling pathways in the heart. Biol Sex Differ 5:6. doi:10.1186/2042-6410-5-6

    Article  PubMed  PubMed Central  Google Scholar 

  32. Nordmeyer J, Eder S, Mahmoodzadeh S, Martus P, Fielitz J, Bass J, Bethke N, Zurbrugg HR, Pregla R, Hetzer R, Regitz-Zagrosek V (2004) Upregulation of myocardial estrogen receptors in human aortic stenosis. Circulation 110:3270–3275. doi:10.1161/01.CIR.0000147610.41984.E8

    Article  CAS  PubMed  Google Scholar 

  33. Norris JD, Fan D, Kerner SA, McDonnell DP (1997) Identification of a third autonomous activation domain within the human estrogen receptor. Mol Endocrinol 11:747–754. doi:10.1210/mend.11.6.0008

    Article  CAS  PubMed  Google Scholar 

  34. Petrov G, Regitz-Zagrosek V, Lehmkuhl E, Krabatsch T, Dunkel A, Dandel M, Dworatzek E, Mahmoodzadeh S, Schubert C, Becher E, Hampl H, Hetzer R (2010) Regression of myocardial hypertrophy after aortic valve replacement: faster in women? Circulation 122:S23–S28. doi:10.1161/CIRCULATIONAHA.109.927764

    Article  PubMed  Google Scholar 

  35. Petzhold D, Simsek B, Meissner R, Mahmoodzadeh S, Morano I (2014) Distinct interactions between actin and essential myosin light chain isoforms. Biochem Biophys Res Commun 449:284–288. doi:10.1016/j.bbrc.2014.05.040

    Article  CAS  PubMed  Google Scholar 

  36. Petzhold D, Lossie J, Keller S, Werner S, Haase H, Morano I (2011) Human essential myosin light chain isoforms revealed distinct myosin binding, sarcomeric sorting, and inotropic activity. Cardiovasc Res 90:513–520. doi:10.1093/cvr/cvr026

    Article  CAS  PubMed  Google Scholar 

  37. Price KM, Littler WA, Cummins P (1980) Human atrial and ventricular myosin light-chains subunits in the adult and during development. Biochem J 191:571–580. doi:10.1042/bj1910571

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Ritter O, Haase H, Schulte HD, Lange PE, Morano I (1999) Remodeling of the hypertrophied human myocardium by cardiac bHLH transcription factors. J Cell Biochem 74:551–561. doi:10.1002/(SICI)1097-4644(19990915)74:4<551:AID-JCB5>3.0.CO;2-9

    Article  CAS  PubMed  Google Scholar 

  39. Ritter O, Luther HP, Haase H, Baltas LG, Baumann G, Schulte HD, Morano I (1999) Expression of atrial myosin light chains but not alpha-myosin heavy chains is correlated in vivo with increased ventricular function in patients with hypertrophic obstructive cardiomyopathy. J Mol Med (Berl) 77:677–685. doi:10.1007/s001099900030

    Article  CAS  Google Scholar 

  40. Ropero AB, Eghbali M, Minosyan TY, Tang G, Toro L, Stefani E (2006) Heart estrogen receptor alpha: distinct membrane and nuclear distribution patterns and regulation by estrogen. J Mol Cell Cardiol 41:496–510. doi:10.1016/j.yjmcc.2006.05.022

    Article  CAS  PubMed  Google Scholar 

  41. Schaub MC, Tuchschmid CR, Srihari T, Hirzel HO (1984) Myosin isoenzymes in human hypertrophic hearts. Shift in atrial myosin heavy chains and in ventricular myosin light chains. Eur Heart J 5 Suppl F:85–93. doi:10.1093/eurheartj/5.suppl_F.85

  42. Schaub MC, Hefti MA, Zuellig RA, Morano I (1998) Modulation of contractility in human cardiac hypertrophy by myosin essential light chain isoforms. Cardiovasc Res 37:381–404. doi:10.1016/S0008-6363(97)00258-7

    Article  CAS  PubMed  Google Scholar 

  43. Shi QW, Danilczyk U, Wang JX, See YP, Williams WG, Trusler GA, Beaulieu R, Rose V, Jackowski G (1991) Expression of ventricular myosin subunits in the atria of children with congenital heart malformations. Circ Res 69:1601–1607. doi:10.1161/01.RES.69.6.1601

    Article  CAS  PubMed  Google Scholar 

  44. Timson DJ, Trayer HR, Trayer IP (1998) The N-terminus of A1-type myosin essential light chains binds actin and modulates myosin motor function. Eur J Biochem 255:654–662. doi:10.1046/j.1432-1327.1998.2550654.x

    Article  CAS  PubMed  Google Scholar 

  45. Vadlamudi RK, Wang RA, Mazumdar A, Kim Y, Shin J, Sahin A, Kumar R (2001) Molecular cloning and characterization of PELP1, a novel human coregulator of estrogen receptor alpha. J Biol Chem 276:38272–38279. doi:10.1074/jbc.M103783200

    CAS  PubMed  Google Scholar 

  46. Vadlamudi RK, Manavathi B, Balasenthil S, Nair SS, Yang Z, Sahin AA, Kumar R (2005) Functional implications of altered subcellular localization of PELP1 in breast cancer cells. Cancer Res 65:7724–7732. doi:10.1158/0008-5472.CAN-05-0614

    CAS  PubMed  PubMed Central  Google Scholar 

  47. Valentine JE, Kalkhoven E, White R, Hoare S, Parker MG (2000) Mutations in the estrogen receptor ligand binding domain discriminate between hormone-dependent transactivation and transrepression. J Biol Chem 275:25322–25329. doi:10.1074/jbc.M002497200

    Article  CAS  PubMed  Google Scholar 

  48. van Eickels M, Grohe C, Cleutjens JP, Janssen BJ, Wellens HJ, Doevendans PA (2001) 17beta-estradiol attenuates the development of pressure-overload hypertrophy. Circulation 104:1419–1423. doi:10.1161/hc3601.095577

    Article  PubMed  Google Scholar 

  49. Woischwill C, Karczewski P, Bartsch H, Luther HP, Kott M, Haase H, Morano I (2005) Regulation of the human atrial myosin light chain 1 promoter by Ca2+-calmodulin-dependent signaling pathways. FASEB J 19:503–511. doi:10.1096/fj.04-2201com

    Article  CAS  PubMed  Google Scholar 

  50. Yamashita H, Sugiura S, Fujita H, Yasuda S, Nagai R, Saeki Y, Sunagawa K, Sugi H (2003) Myosin light chain isoforms modify force-generating ability of cardiac myosin by changing the kinetics of actin–myosin interaction. Cardiovasc Res 60:580–588. doi:10.1016/j.cardiores.2003.09.011

    Article  CAS  PubMed  Google Scholar 

  51. Zacharzowsky UB, Wolff G, Kott M, Haase H, Bartsch H, Nuessler AK, Baltas LG, Karawajew L, Morano I (2002) Analysis of the energetic state of heart cells after adenovirus-mediated expression of hALC-1. J Cell Biochem 86:422–431. doi:10.1002/jcb.10200

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by Friede Springer Herz-Stiftung [to SM] and Deutsche Forschungsgemeinschaft (DFG-FOR1054 to VRZ and SM). We thank Britta Fielitz, Arne Kuehne, Petra Domaing, and Karin Karczewski for excellent technical support. We also thank Prof. Pierre Chambon (INSERM, France) for the generous gift of ERα-pSG5 plasmid.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shokoufeh Mahmoodzadeh.

Ethics declarations

Ethical statements

The use of human cardiac samples was approved by the Charité University Hospital review Ethics board (Berlin, Germany) and followed the rules of the Declaration of Helsinki. Samples were obtained with patient informed consent prior to the procedure.

All procedures involving mice were approved by and conducted in accordance with the guidelines set out by the State Agency for Health and Social Affairs (LaGeSo, Berlin, Germany).

Conflict of interest

MM. Davidson is the holder of the patent on AC16 cells, and other authors have declared that no competing interests exist.

Additional information

K. Duft and M. Schanz contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Duft, K., Schanz, M., Pham, H. et al. 17β-Estradiol-induced interaction of estrogen receptor α and human atrial essential myosin light chain modulates cardiac contractile function. Basic Res Cardiol 112, 1 (2017). https://doi.org/10.1007/s00395-016-0590-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00395-016-0590-1

Keywords

Navigation