Skip to main content
Log in

Functional characterization of the human atrial essential myosin light chain (hALC-1) in a transgenic rat model

  • Original Article
  • Published:
Journal of Molecular Medicine Aims and scope Submit manuscript

Abstract

Most patients with hypertrophic cardiomyopathy and congenital heart diseases express the atrial essential myosin light chains (ALC-1) in their ventricles, partially replacing the ventricular essential light chains (VLC-1). This VLC-1/ALC-1 isoform shift is correlated with an increase in cross-bridge cycling kinetics as measured using skinned fibers from the hypertrophied ventricles of human hearts.

To study the functional importance of hALC-1 in the intact perfused heart, we generated a transgenic rat model (TGR) overexpressing hALC-1 in the heart. Twelve-week-old TGR rats expressed 17±4 μg hALC-1 per mg of whole SDS-soluble protein. Their perfused heart contractility parameters were evaluated using the Langendorff preparation. Expression of hALC-1 was accompanied by statistically significant improvements (P<0.001) in the contractile parameters of the hearts of the TGR compared to the age matched control (WKY) animals, represented by increases from 20.8±2.3 to 45.1±3.6 mmHg/g heart weight in the developed left ventricular pressure, 1,035.7±89.8 to 2,181±135.4 mmHg/s in the contraction rate, and 713±60.2 to 1,364±137.4 mmHg/s in the relaxation rate in the WKY and the TGR groups respectively. Characterizing the functional effects of hALC-1 at the whole organ level represents a step towards gene therapy of heart failure.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1 A
Fig. 2
Fig. 3
Fig. 4 A, B
Fig. 5 A–C
Fig. 6A, B
Fig. 7A, B
Fig. 8A–C
Fig. 9

Similar content being viewed by others

References

  1. Lowey S, Risby D (1993) Light chains from fast and slow muscle myosins. Nature 234:81–85

    Google Scholar 

  2. Moncrief ND, Kretsinger NH, Goodman M (1990) Evolution of EF-hand calcium-modulated proteins: relationships based on amino acid sequences. J Mol Evol 30:522–562

    CAS  PubMed  Google Scholar 

  3. Barton P, Buckingham ME (1985) The myosin alkali light chain proteins and their genes. Biochem J 231:249–261

    CAS  PubMed  Google Scholar 

  4. Fallot A (1888) Contribution a l ‘anatomie pathologique de la maladie bleue (cyanose cardiac). Marseille Med 25:418–420

    Google Scholar 

  5. Seharaseyon J, Bober E, Hsieh CL, Fodor WL, Francke U, Arnold HIH, Vanin EF (1990) Human embryonic/atrial myosin alkali light chain gene: characterization, sequence, and chromosomal location. Genomics 7:289–293

    CAS  PubMed  Google Scholar 

  6. Morano I, Hadicke K, Haase H, Bohm M, Erdmann E, Schaub MC (1997) Changes in essential myosin light chain isoform expression provide a molecular basis for isometric force regulation in the failing human heart. J Mol Cell Cardiol 29:1117–1187

    Article  Google Scholar 

  7. Sutsch G, Brunner UT, Von Schulthes C, Hirzel HO, Hess OM, Turina M, Krayenbuehl HP, Schaub MC (1992) Hemodynamic performance and myosin light 1 expression in the hypertrophied left ventricle in aortic valve disease before and after valve replacement. Circ Res 70:1035–1043

    PubMed  Google Scholar 

  8. Morano M, Zacharzowski U, Maier M, Lange PE, Alexi-meskishvili V, Haase H, Morano I (1996) Regulation of human heart by essential myosin light chain isoforms. J Clin Invest 98:467–473

    CAS  PubMed  Google Scholar 

  9. Ritter O, Luther HP, Haase H, Baltas LG, Balzereit D, Baumann G, Schulte HD, Morano I (1999) Expression of atrial myosin light chains but not alpha-myosin heavy chains correlate with increased ventricular function in patients with hypertrophic obstructive cardiomyopathy in vivo. J Mol Med 77:677–685

    Article  CAS  PubMed  Google Scholar 

  10. Fewell JG, Hewett, Sanbe A, Klevitsky R, Hayes E, Warshaw D, Maughan J, Robbins J (1998) Functional significance of cardiac essential light chain isoform switching in transgenic mice. J Clin Invest 101:2630–2639

    CAS  PubMed  Google Scholar 

  11. Zimmermann K, Kautz S, Hajdu G, Winter C, Whalen RG, Starzinski-Powitz A (1990) Heterogenic mRNAa with an identical protein-coding region of the human embryonic myosin alkali light chain in skeletal muscle cells. J Mol Biol 211:505–513

    CAS  PubMed  Google Scholar 

  12. Popova E, Krivokharchenko A, Ganten D, Bader M (2002) Comparison between PMSG and FSH induced superovulation for the generation of transgenic rats. Mol Reprod Dev 63:177–182

    Article  CAS  PubMed  Google Scholar 

  13. Haase H, Karczewski P, Beckert R, Krause EG (1993) Phosphorylation of the L-type calcium channel β-subunit is involved in β adrenergic signal transduction in canine myocardium. FEBS Lett 335:217–222

    Article  CAS  PubMed  Google Scholar 

  14. Wang LS, Smith RV (1975) Lowry determination of proteins in the presence of Triton X-100. Anal Biochem 63:414–417

    CAS  PubMed  Google Scholar 

  15. Offer G, Moo C, Starr R (1973) A new protein of myosin filaments of vertebrate skeletal myofibrils: extraction, purification and characterization. J Mol Biol 74:653–676

    CAS  PubMed  Google Scholar 

  16. Swynghedauw (1986) Developmental and functional adaptation of contractile proteins in cardiac and skeletal muscles. Physiol Rev 66:710–771

    CAS  PubMed  Google Scholar 

  17. Grossman W, Haynes F, Paraaskos JA, Saltz S, Dalen JE, Dexter L (1972) Alterations in preload and myocardial mechanics in the dog and man. Circ Res 31:83–94

    CAS  PubMed  Google Scholar 

  18. Brodie BR, Grossmann W, Mann T, McLaurin LP (1997) Effects of sodium nitroprusside on left ventricular diastolic pressure-volume relations. J Clin Invest 59:59–65

    Google Scholar 

  19. Timson DJ, Trayer HP, Trayer IP (1998) The N-terminus of A1-type myosin essential light chains bind actin and modulates myosin motor function. Eur J Biochem 255:654–662

    CAS  PubMed  Google Scholar 

  20. Sutoh K (1982) Identification of myosin-binding sites on the actin sequence. Biochemistry 21:3654–3661

    CAS  PubMed  Google Scholar 

  21. Stepkowski D (1995) The role of the skeletal muscle myosin light chains N-terminal fragments. FEBS Lett 374:6–11

    CAS  PubMed  Google Scholar 

  22. Morano I, Ritter O, Bonz A, Timek T, Christian F, Michel VG (1995) Myosin light chain-actin interaction regulates cardiac contractility. Circ Res 76:720–725

    CAS  PubMed  Google Scholar 

  23. James J, Osinska H, Hewett TE, Kimball T, Klevitsky R, Witt S, Hall DG, Gulick J, Robbins J (1999) Transgenic over-expression of a motor protein at high levels results in severe cardiac pathology. Transgenic Res 8:9–22

    Article  CAS  PubMed  Google Scholar 

  24. Hoffmann S, Krause T, van Geel PP, Willenbrock R, Pagel I, Pinto YM, Buikema H, van Gilst WH, Lindschau C, Paul M, Inagami T, Ganten D, Urata H (2001) Overexpression of the human angiotensin II type 1 receptor in the rat heart augments load-induced cardiac hypertrophy. J Mol Med 79:601–608

    CAS  PubMed  Google Scholar 

  25. Dobie KW, Lee M, Fantes JA, Graham E, Clark AJ, Springbett A, Lathe R, McClenaghan M (1996) Variegated transgene expression in mouse mammary gland is determined by the transgene integration locus. Proc Natl Acad Sci USA 93:6659–6664

    Article  CAS  PubMed  Google Scholar 

  26. Margaret L, Opsah l, McClenaghan M, Springbett A, Reid S, Lathe R, Colman A, Whitelaw CBA (2002) Multiple effects of genetic background on variegated transgene expression in mice. Genetics 160:1107–1112

    PubMed  Google Scholar 

  27. Gulick J, Hewett TE, Klevitsky R, Buck SH, Moss RL, Robbins J (1997) Transgenic remodeling of the regulatory myosin light chains in the mammalian heart. Circ Res 80:655–664

    CAS  PubMed  Google Scholar 

  28. Nair RR, Nair P (2001) Age-dependent variation in contractility of adult cardiac myocytes. Int J Biochem Cell Biol 33:119–125

    Article  CAS  PubMed  Google Scholar 

  29. Qi XL, Rouleau JL (1997) Age-dependent changes in the effects of endocardial endothelium on the contractile characteristics of its adjacent myocardium in rats. J Mol Cell Cardiol 29:823–829

    Article  CAS  PubMed  Google Scholar 

  30. Klose J (1999) Large-gel 2D electrophoresis. Methods Mol Biol 112:147–172

    CAS  PubMed  Google Scholar 

  31. Klose J, Kobalz U (1995) Two-dimensional electrophoresis of proteins: an update protocol and implications for a functional analysis of the genome. Electrophoresis 16:1034–1059

    CAS  PubMed  Google Scholar 

  32. Morano I, Lengsfeld M, Ganten U, Ganten D, Ruegg JC (1988) Chronic hypertension changes myosin isoenzyme patterns and decreases myosin phosphorylation in the rat heart. J Mol Cell Cardiol 20:875–886

    PubMed  Google Scholar 

  33. Shevchenko A, Wilm M, Vorm O, Mann M (1996) Mass spectrometric sequencing of proteins silver-stained polyacrylamide gels. Anal Chem 68:850–858

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We are grateful to Steffen Lutter and Rosemarie Barnow for their excellent technical assistance. This work was supported by the DFG (Deutsche Forschungsgemeinschaft) Mo 362/22-1, Graduiertenkolleg 754 and VACSERA (The Egyptian Holding Company for Biological Products and Vaccines), 9-02-20/1/02.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ahmed Ihab Abdelaziz.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Abdelaziz, A.I., Segaric, J., Bartsch, H. et al. Functional characterization of the human atrial essential myosin light chain (hALC-1) in a transgenic rat model. J Mol Med 82, 265–274 (2004). https://doi.org/10.1007/s00109-004-0525-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00109-004-0525-4

Keywords

Navigation