Skip to main content
Log in

Diurnal variability of the global tropical tropopause: results inferred from COSMIC observations

  • Published:
Climate Dynamics Aims and scope Submit manuscript

Abstract

Short and long-term variability of the tropical tropopause controls the exchange of minor constituents between the troposphere and the stratosphere. We present the diurnal variability of the global tropical tropopause altitude and temperature using 7 years of COSMIC observations. The aim of the study is to extract diurnal tropopause signals and their impact on stratosphere-troposphere exchange processes. The possible role of atmospheric tides and convection in controlling the tropopause characteristics are discussed. The most significant and new observation is that in the deep tropics the cold-point tropopause altitude is higher and temperatue is cooler over the land (ocean) during evening to late evening hours (afternoon to early evening). Lower tropopause altitude allows the stratospheric air intrusion into the troposphere during the day time. The combined effect of diurnal tropopause altitude changes and turbulent mixing increases the possibility of stratospheric intrusions. A warmer forenoon tropopause allows increased injection of water vapor from the troposphere to the lower stratosphere. Over the tropical land (ocean), the zonal mean diurnal amplitude is 130–200 m (140–180 m) for tropopause altitude and 0.6–0.9 K (0.6–0.8 K) for tropopause temperature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  • Alexander P, Torre A, Llamedo P, Hierro R (2014) Precision estimation in temperature and refractivity profiles retrieved by GPS radio occultations. J Geophys Res 119:8624–8638

    Article  Google Scholar 

  • Biasutti M, Yuter SE, Burleyson CD, Sobel AH (2012) Very high resolution rainfall patterns measured by TRMM precipitation radar: seasonal and diurnal cycles. Clim Dyn 39:239–258

    Article  Google Scholar 

  • Birner T (2010) Recent widening of the tropical belt from global tropopause statistics: sensitivities. J Geophys Res 115:D23109

    Article  Google Scholar 

  • Bolton D (1980) The computation of equivalent potential temperature. Mon Wea Rev 108:1046–1053

    Article  Google Scholar 

  • Chapman S, Lindzen RS (1970) Atmospheric tides thermal and gravitational. D Reidel, Dordrecht, Holland, pp 200

    Google Scholar 

  • Das SS, Jain AR, Kumar KK, Narayana Rao D (2008) Diurnal variability of the tropical tropopause: significance of VHF radar measurements. Radio Sci 43:RS6003

    Article  Google Scholar 

  • Das SS, Kumar KK, Uma KN (2010) MST radar investigation on inertia-gravity waves associated with tropical depression in the upper troposphere and lower stratosphere over Gadanki (13.51°N, 79.21°E). J Atmos Sol-Terr Phys 72:1184–1194

    Article  Google Scholar 

  • Das SK, Das SS, Chiang CW, Kumar KK, Nee JB (2012) Variability in tropopause height and its temperature on different time scales: An observational study over Banqiao, Taiwan. J Atmos Sol-Terr Phys 81:1–8

    Article  Google Scholar 

  • Feng S, Fu Y, Xiao Q (2011) Is the tropopause higher over the Tibetan Plateau? Observational evidence from Constellation Observing System for Meteorology, Ionosphere, and Climate (COSMIC) data. J Geophys Res 116:D21121

    Article  Google Scholar 

  • Forster PM, Shine KP (1999) Stratospheric water vapor changes as a possible contributor to observed stratospheric cooling. Geophys Res Lett 26:3309–3312

    Article  Google Scholar 

  • Fueglistaler S, Dessler AE, Dunkerton TJ, Folkins I, Fu Q, Mote PW (2009) Tropical tropopause layer. Rev Geophys 47:RJ1004

    Article  Google Scholar 

  • Fujiwara M, Suzuki J, Gettelman A, Hegglin MI, Akiyoshi H, Shibata K (2012) Wave activity in the tropical tropopause layer in seven reanalysis and four chemistry climate model data sets. J Geophys Res 117:D12105

    Article  Google Scholar 

  • Gage KS, Reid GC (1985) Response of the tropical tropopause to El Chichon and the El Nino of 1982–1983. Geophys Res Lett 12:195–197

    Article  Google Scholar 

  • Gettelman A, Salby ML, Sassi F (2002) Distribution and influence of convection in the tropical tropopause region. J Geophys Res 107:1–12

    Google Scholar 

  • Hajj GA, Ao CO, Iijima BA, Kuang D, Kursinski ER, Mannucci AJ, Meehan TK, Romans LJ, de la Torre Juarez M, Yunck TP (2004) CHAMP and SAC-C atmospheric occultation results and intercomparisons. J Geophys Res 109:06109

    Article  Google Scholar 

  • Highwood EJ, Hoskins BJ (1998) The tropical tropopause. Q J R Meteorol Soc 124:1579–1604

    Article  Google Scholar 

  • Holton JR, Haynes PH, Mcintyre ME, Douglass AR, Rood RB, Pfister L (1995) Stratosphere–troposphere exchange. Rev Geophys 33:403–439

    Article  Google Scholar 

  • Jain AR, Das SS, Mandal TK, Mitra AP (2006) Observations of extremely low tropopause temperature over the Indian tropical region during monsoon and post-monsoon months: possible implications. J Geophys Res 111:D07106

    Google Scholar 

  • Janowiak JE, Joyce RJ, Yarosh Y (2001) A real–time global half–hourly pixel–resolution infrared dataset and its applications. Bull Amer Meteor Soc 82:205–217

    Article  Google Scholar 

  • Khaykin SM, Pommereau JP, Hauchecorne A (2013) Impact of land convection on temperature diurnal variation in the tropical lower stratosphere inferred from COSMIC GPS radio occultation. Atmos Chem Phys 13:6391–6402

    Article  Google Scholar 

  • Kirk-Davidoff DB, Hintsa EJ, Anderson JG, Keith DW (1999) The effect of climate change on ozone depletion through changes in stratospheric water vapor. Nature 402:399–401

    Article  Google Scholar 

  • Kishore P, Namboothiri SP, Jiang JH, Sivakumar V, Igarashi K (2009) Global temperature estimates in the troposphere and stratosphere: a validation study of COSMIC/FORMOSAT-3 measurements. Atmos Chem Phys 9:897–908

    Article  Google Scholar 

  • Kuo Y, Wee T, Sokolovskiy S, Rocken C, Schreiner W, Hunt DC, Anthes RA (2004) Inversion and error estimation of GPS Radio Occultation data. J Meteorol Soc Japan 82:507–531

    Article  Google Scholar 

  • Kursinski ER, Hajj GA, Schofield JT, Linfield RP, Hardy KR (1997) Observing earth’s atmosphere with radio occultation measurements using the global positioning system. J Geophys Res 102:23429–23465

    Article  Google Scholar 

  • Liu Y, Xu T, Liu J (2014) Characteristics of the seasonal variation of the global tropopause revealed by COSMIC/GPS data. Adv Space Res 54:2274–2285

    Article  Google Scholar 

  • Livesey NJ, Read WG, Froidevaux L, Lambert A, Manney GL, Pumphrey HC et al (2011) EOS MLS version V3.3 level 2 data quality and description document. Jet Propul Lab Pasadena, CA. http://mls.jpl.nasa.gov

  • Meenu S, Rajeev K, Parameswaran K, Nair AKM (2010) Regional distribution of deep clouds and cloud top altitudes over the Indian subcontinent and the surrounding oceans. J Geophys Res 115:D05205

    Article  Google Scholar 

  • Pirscher B, Foelsche U, Lackner BC, Kirchengast G (2007) Local time influence in single-satellite radio occultation climatologies from Sun-synchronous and non-Sun-synchronous satellites. J Geophys Res 112:D11119

    Article  Google Scholar 

  • Rieckh T, Scherllin-Pirscher B, Ladstädter F, Foelsche U (2014) Characteristics of tropopause parameters as observed with GPS radio occultation. Atmos Meas Tech 7:3947–3958

    Article  Google Scholar 

  • Rind D, Lonergan P (1995) Modeled impacts of stratospheric ozone and water vapor perturbations with implications for high-speed civil transport aircraft. J Geophys Res 100:7381–7396

    Article  Google Scholar 

  • Scott RK, Cammas JP (2002) Wave breaking and mixing at the subtropical tropopause. J AtmosSci 59:2347–2361

    Article  Google Scholar 

  • Seidel DJ, Randel WJ (2006) Variability and trends in the global tropopause estimated from radiosonde data. J Geophys Res 111:D21101

    Article  Google Scholar 

  • Seidel DJ, Ross RJ, Angell JK, Reid GC (2001) Climatological characteristics of the tropical tropopause as revealed by radiosondes. J Geophys Res 106:7857–7878

    Article  Google Scholar 

  • Seidel DJ, Fu Q, Randel WJ, Reichler TJ (2008) Widening of the tropical belt in a changing climate. Nat Geosci 1:21–24

    Google Scholar 

  • Shimizu A, Tsuda T (2000) Variations in tropical tropopause observed with radiosondes in Indonesia. Geophys Res Lett 27:2541–2544

    Article  Google Scholar 

  • Smith EK, Weintraub S (1953) The constants in the equation for atmospheric refractive index at radio frequencies. J Res Natl Bur Stand 50:39–41

    Article  Google Scholar 

  • Thuburn J, Craig GC (2002) On the temperature structure of the tropical substratosphere. J Geophys Res 107:D2

    Article  Google Scholar 

  • Tian B, Soden BJ, Wu X (2004) Diurnal cycle of convection, clouds, and water vapor in the tropical upper troposphere: Satellite versus a general circulation model. J Geophys Res 109:D10101

    Article  Google Scholar 

  • Tsuda T, Murayama Y, Wiryosumarto H, Harijono SWB, Kato S (1994) Radiosonde observations of equatorial atmosphere dynamics over Indonesia: 1. Equatorial waves and diurnal tides. J Geophys Res 99:10491–10505

    Article  Google Scholar 

  • Tsuda T, Lin X, Hayashi H, Noersomadi (2011) Analysis of vertical wave number spectrum of atmospheric gravity waves in the stratosphere using COSMIC GPS radio occultation data. Atmos Meas Tech 4:1627–1636

    Article  Google Scholar 

  • Uma KN, Das SS (2016) Quantitative and qualitative assessment of diurnal variability in tropospheric humidity using SAPHIR on-board Megha-Tropiques. J Atmos Sol-Terr Phys 146:89–100

    Article  Google Scholar 

  • Uma KN, Das SK, Das SS, Kumar KK (2013a) Aura-MLS observations of water vapor entering the stratosphere over the Northern bay of Bengal and East Equatorial Indian Ocean. Terr Atmos Ocean Sci 24:357–368

  • Uma KN, Kumar KK, Das SS (2013b) Migrating and non-migrating diurnal and semi-diurnal tides over a tropical and an equatorial station. Indian J Radio and Space Phys 42:340–355

  • Uma KN, Das SK, Das SS (2014) A climatological perspective of water vapor at the UTLS region over different global monsoon regions: observations inferred from the Aura-MLS and reanalysis data. Clim Dyn 43:407–420

    Article  Google Scholar 

  • World Meteorological Organization (WMO) (1957) Meteorology-a three-dimensional science: second session of the commission for aerology. WMO Bull IV(4):134–138

    Google Scholar 

  • Xian T, Fu, Y (2015) Characteristics of tropopause-penetrating convection determined by TRMM and COSMIC GPS radio occultation measurements. J Geophys Res 120:7006–7024

    Article  Google Scholar 

  • Xie F, Wu DL, Ao CO, Mannucci AJ (2010) Atmospheric diurnal variations observed with GPS radio occultation soundings. Atmos Chem Phys 10:6889–6899

    Article  Google Scholar 

  • Yamamoto Masayuki K, Oyamatsu Masayuki, Horinouchi Takeshi, Hashiguchi Hiroyuki, Fukao Shoichiro (2003) High time resolution determination of the tropical tropopause by the equatorial atmosphere radar. Geophys Res Lett 30:2094

    Article  Google Scholar 

  • Zhang X, Forbes JM, Hagan ME, Russell JM III, Palo SE, Mlynczak M (2006) Monthly tidal temperatures 20–120 km from TIMED/SABER. J Geophys Res 111:A10208

    Article  Google Scholar 

Download references

Acknowledgements

Authors would like to acknowledge UCAR/CDAAC team for providing the data. Thanks to Director, Space Physics Laboratory (SPL) and Head, Atmospheric Dynamics Branch, SPL for their constant supports extended during this study. The first author KVS thankful to Indian Space Research Organization (ISRO) for providing doctoral fellowship during this study period. Authors would like to sincerely thank both the anonymous reviewers and the editor for their constructive comments and suggestion, which helped the manuscript significantly during the review process.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Siddarth Shankar Das.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Suneeth, K.V., Das, S.S. & Das, S.K. Diurnal variability of the global tropical tropopause: results inferred from COSMIC observations. Clim Dyn 49, 3277–3292 (2017). https://doi.org/10.1007/s00382-016-3512-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00382-016-3512-x

Keywords

Navigation