Skip to main content

Advertisement

Log in

Sensitivity of tropical cyclones to resolution, convection scheme and ocean flux parameterization over Eastern Tropical Pacific and Tropical North Atlantic Oceans in the RegCM4 model

  • Published:
Climate Dynamics Aims and scope Submit manuscript

Abstract

The sensitivity of simulated tropical cyclones (TCs) to resolution, convection scheme and ocean surface flux parameterization is investigated with a regional climate model (RegCM4) over the CORDEX Central America domain, including the Tropical North Atlantic (TNA) and Eastern Tropical Pacific (ETP) basins. Simulations for the TC seasons of the ten-year period (1989–1998) driven by ERA-Interim reanalysis fields are completed using 50 and 25 km grid spacing, two convection schemes (Emanuel, Em; and Kain–Fritsch, KF) and two ocean surface flux representations, a Monin–Obukhov scheme available in the BATS land surface package (Dickinson et al. 1993), and the scheme of Zeng et al. (J Clim 11(10):2628–2644, 1998). The model performance is assessed against observed TC characteristics for the simulation period. In general, different sensitivities are found over the two basins investigated. The simulations using the KF scheme show higher TC density, longer TC duration (up to 15 days) and stronger peak winds (>50 ms−1) than those using Em (<40 ms−1). All simulations show a better spatial representation of simulated TC density and interannual variability over the TNA than over the ETP. The 25 km resolution simulations show greater TC density, duration and intensity compared to the 50 km resolution ones, especially over the ETP basin, and generally more in line with observations. Simulated TCs show a strong sensitivity to ocean fluxes, especially over the TNA basin, with the Monin–Obukhov scheme leading to an overestimate of the TC number, and the Zeng scheme being closer to observations. All simulations capture the density of cyclones during active TC seasons over the TNA, however, without data assimilation, the tracks of individual events do not match closely the corresponding observed ones. Overall, the best model performance is obtained when using the KF and Zeng schemes at 25 km grid spacing.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  • Atlas R, Reale O, Shen B-W, Lin S-J, Chern J-D, Putman W, Lee T, Yeh K-S, Bosilovich M, Radakovich J (2005) Hurricane forecasting with the high-resolution NASA finite volume general circulation model. Geophys Res Lett 32:L03807. doi:10.1029/2004GL021513

    Article  Google Scholar 

  • Bao J-W, Wilczak JM, Choi JK, Kantha LH (2000) Numerical simulations of air-sea interaction under high wind conditions using a coupled model: a study of hurricane development. Mon Weather Rev 128:2190–2210

    Article  Google Scholar 

  • Bender MA, Knutson TR, Tuleya RE, Sirutis JJ, Vecchi GA, Garner ST, Held IM (2010). Modeled impact of anthropogenic warming on the frequency of intense Atlantic hurricanes. Science 327(5964):454–458

    Article  Google Scholar 

  • Bengtsson L, Hodges KI, Esch M, Keenlyside N, Kornblueh L, Luo J, Yamagata T (2007) How many tropical cyclones change in a warmer climate? Tellus Ser A 59:539–561. doi:10.1111/j.1600-0870.2007.00251.x

    Article  Google Scholar 

  • Camargo SJ, Wing AA (2016) Tropical cyclones in climate models. Wiley Interdiscip Rev Clim Change 7:211–237

    Article  Google Scholar 

  • Charney JG, Eliassen A (1964) On the growth of the hurricane depression. J Atmos Sci 21(1):68–75

    Article  Google Scholar 

  • Charnock H (1955) Wind stress on a water surface. Quart J R Meteorol Soc 81:639–640

    Article  Google Scholar 

  • Chen J-H, Lin S-J (2011) The remarkable predictability of inter-annual variability of Atlantic hurricanes during the past decade. Geophys Res Lett 38:L11804. doi:10.1029/2011GL047629

    Google Scholar 

  • Davis C, Wang W, Dudhia J, Torn R (2010) Does increased horizontal resolution improve hurricane wind forecasts? Weather Forecast 25(6):1826–1841

    Article  Google Scholar 

  • Dee DP et al (2011) The ERA-Interim reanalysis: configuration and performance of the data assimilation system. Quart J R Meteorol Soc 137:553–597

    Article  Google Scholar 

  • Dickinson RE, Henderson-Sellers A, Kennedy PJ (1993) Biosphere– atmosphere transfer scheme (BATS) version1E as coupled to the NCAR community model. In: NCAR Technical Note NCAR/TN-387+STR, National Center for Atmospheric Research, Boulder, Colorado

  • Diro GT, Giorgi F, Fuentes-Franco R, Walsh KJE, Giuliani G, Coppola E (2014) Tropical cyclones in a regional climate change projection with RegCM4 over the CORDEX Central America domain. Clim Change 125:79–94

    Article  Google Scholar 

  • Diro GT, Rauscher SA, Giorgi F, Tompkins AM (2012) Sensitivity of seasonal climate and diurnal precipitation over Central America to land and sea surface schemes in RegCM4. Clim Res 52:31–48

    Article  Google Scholar 

  • Done JM, Holland GJ, Bruyère CL, Leung LR, Suzuki-Parker A (2015) Modeling high-impact weather and climate: lessons from a tropical cyclone perspective. Clim Change 129:381–395

    Article  Google Scholar 

  • Emanuel K (1991) A scheme for representing cumulus convection in large scale models. J Atmos Sci 48:2313–2335

    Article  Google Scholar 

  • Fairall C-W, Bradley E-E, Hare J-E, Grachev A-A, Edson J-B (2003) Bulk parameterization of sir-sea fluxes: updates and verification for the COARE algorithm. J Clim 16:571–591

    Article  Google Scholar 

  • Fritsch JM, Chappell CF, Hoxit LR (1976) The use of large-scale budgets for convective parameterization. Mon Weather Rev 104:1408–1418

    Article  Google Scholar 

  • Fudeyasu H, Wang Y, Satoh M, Nasuno T, Miura H, Yanase W (2008) Global cloud-system-resolving model NICAM successfully simulated the lifecycles of two real tropical cyclones. Geophys Res Lett 35:L22808. doi:10.1029/2008GL036003

    Article  Google Scholar 

  • Fuentes-Franco R, Coppola E, Giorgi F, Graef F, Pavia E-G (2014) Assessment of RegCM4 simulated inter-annual variability and daily-scale statistics of temperature and precipitation over Mexico. Clim Dyn 42:629–647

    Article  Google Scholar 

  • Fuentes-Franco R, Coppola E, Giorgi F, Pavia EG, Diro GT, Graef F (2015) Inter-annual variability of precipitation over Southern Mexico and Central America and its relationship to sea surface temperature from a set of future projections from CMIP5 GCMs and RegCM4 CORDEX simulations. Clim Dyn 45(1–2):425–440

    Article  Google Scholar 

  • Gao S, Chiu LS (2010) Surface latent heat flux and rainfall associated with rapidly intensifying tropical cyclones over the western North Pacific. Int J Remote Sens 31(17–18):4699–4710

    Article  Google Scholar 

  • Giorgi F, Gutowski JW (2015) Regional dynamical downscaling and the CORDEX initiative. Annu Rev Environ Resour 40:467–490

    Article  Google Scholar 

  • Giorgi F, Jones C, Asrar GR (2009) Addressing climate information needs at the regional level: the CORDEX framework. World Meteorol Organ Bull 58(3):175

    Google Scholar 

  • Giorgi F, Coppola E, Solmon F, Mariotti L, Sylla M, Bi X, Elguindi N, Diro G-T, Nair V, Giuliani G, Cozzini S, Guettler I, O’Brien T, Tawfik A, Shalaby A, Zakey A-S (2012) RegCM4: model description and preliminary tests over multiple CORDEX domains. Clim Res 52:7–29

    Article  Google Scholar 

  • Grell G (1993) Prognostic evaluation of assumptions used by cumulus parameterizations. Mon Weather Rev 121:764–787

    Article  Google Scholar 

  • Holbach HM, Bourassa MA (2014) The effects of gap-wind-induced vorticity, the monsoon trough, and the ITCZ on east Pacific tropical cyclogenesis. Mon Weather Rev 142(3):1312–1325

    Article  Google Scholar 

  • Holtslag A, de Bruijn E, Pan H-L (1990) A high resolution air mass transformation model for short range weather forecasting. Mon Weather Rev 118:1561–1575

    Article  Google Scholar 

  • Jin C, Cha D, Lee DK, Suh MS, Hong SY, Kang HS, Ho CH (2016) Evaluation of climatological tropical cyclone activity over the western North Pacific in the CORDEX-East Asia multi-RCM simulations. Clim Dyn 47:765–778. doi:10.1007/s00382-015-2869-6

    Article  Google Scholar 

  • Jones C, Giorgi F, Asrar G (2011) The coordinated regional downscaling experiment: CORDEX. an international downscaling link to CMIP5. CLIVAR Exch 56:34–40

    Google Scholar 

  • Kain J-S (2004) The Kain–Fritsch convective parameterization: an update. J Appl Meteorol 43(1):170–181

    Article  Google Scholar 

  • Kain J-S, Fritsch J-M (1990) A one-dimensional entraining/detraining plume model and its application in convective parameterization. J Atmos Sci 47(23):2784–2802

    Article  Google Scholar 

  • Kain JS, Fritsch J-M (1993) Convective parameterization for mesoscale models: the Kain–Fritsch scheme. In: The representation of cumulus convection in numerical models, American Meteorological Society, pp 165–170

  • Kiehl J, Hack J, Bonan G, Boville B, Briegleb B, Williamson D, Rasch P (1996) Description of the ncar community climate model (ccm3). In: NCAR Technical report. TN-420 + STR: NCAR, Boulder, CO, p 152

  • Knutson TR, Tuleya R-E (2004) Impact of CO2-induced warming on simulated hurricane intensity and precipitation: sensitivity to the choice of climate model and convective parameterization. J Clim 17:3477–3495. doi:10.1175/1520-0442(2004)017<3477:IOCWOS>2.0.CO;2

    Article  Google Scholar 

  • Knutson TR, Tuleya RE, Kurihara Y (1998) Simulated increase of Hurricane intensities in a CO2-Warmed Climate. Science 279:1018–1020

    Article  Google Scholar 

  • Knutson TR, Sirutis JJ, Zhao M, Tuley RE, Bender M, Vecchi GA, Villarini G, Chavas D (2015) Global projections of intense tropical cyclone activity for the late twenty-first century from dynamical downscaling of CMIP5/RCP4.5 scenarios. J Clim 28:7203–7224

    Article  Google Scholar 

  • Kurihara Y, Bender M-A, Tuleya R-E, Ross R-J (1998) The GFDL hurricane prediction system and its performance in the 1995 hurricane season. Mon Weather Rev 126:1306–1322

    Article  Google Scholar 

  • Large W-C, Pond S (1981) Open ocean momentum flux measurements in moderate to strong winds. J Phys Oceanogr 11:324–336

    Article  Google Scholar 

  • LaRow T, Lim Y-K, Shin D, Chassignet E, Cocke S (2008) Atlantic basin seasonal hurricane simulations. J Clim 21:3191–3206. doi:10.1175/2007JCLI2036.1

    Article  Google Scholar 

  • Liu T, Katsaros K-B, Businger J-A (1979) Bulk parameterization of air-sea exchanges of heat and water vapor including the molecular constraints at the interface. J Atmos Sci 36:1722–1735

    Article  Google Scholar 

  • Ma L-M, Tan Z-M (2009) Improving the behavior of the cumulus parameterization for tropical cyclone prediction: convection trigger. Atmos Res 92:190–211. doi:10.1016/j.atmosres.2008.09.022

    Article  Google Scholar 

  • Manganello J-V, Hodges K-I, Kinter J-L, Cash BA, Marx L, Jung T, Achuthavarier D, Adams JM, Altshuler EL, Huang BH, Jin EK, Stan C, Towers P, Wedi N (2012) Tropical cyclone climatology in a 10-km global atmospheric GCM: toward weather-resolving climate modeling. J Clim 25:3867–3893

    Article  Google Scholar 

  • Moon IJ, Ginis I, Hara T, Thomas B (2007) A physics-based parameterization of air-sea momentum flux at high wind speeds and its impact on hurricane intensity predictions. Mon Weather Rev 135:2869–2878

    Article  Google Scholar 

  • Murakami H, Sugi M (2010) Effect of model resolution on tropical cyclone climate projections. Sola 6:73–76

    Article  Google Scholar 

  • Nguyen KC, Walsh KJE (2001) Interannual, decadal, and transient greenhouse simulation of tropical cyclone- like vortices in a regional climate model of the South Pacific. J Clim 14:3043–3054

    Article  Google Scholar 

  • Oouchi K, Yoshimura J, Yoshimura H, Mizuta R, Kusonoki S, Noda A (2006) Tropical cyclone climatology in a global-warming climate as simulated in a 20 km-mesh global atmospheric model: frequency and wind intensity analyses. J Meteorol Soc Jpn 84(2):259–276

    Article  Google Scholar 

  • Pal J-S, Small E-E, Eltahir E-A-B (2000) Simulation of regional-scale water and energy budgets: representation of subgrid cloud and precipitation processes within RegCM. J Geophys Res 105(D24):29579–29594

    Article  Google Scholar 

  • Powell MD, Vickery PJ, Reinhold TA (2003) Reduced drag coefficient for high wind speeds in tropical cyclones. Nature 422:279–283

    Article  Google Scholar 

  • Reed KA, Jablonowski C (2011) Impact of physical parameterizations on idealized tropical cyclones in the Community Atmosphere Model. Geophys Res Lett 38:L04805. doi:10.1029/2010GL046297

    Article  Google Scholar 

  • Reynolds R, Rayner N, Smith TM, Stokes D, Wang W (2002) An improved in situ and satellite SST analysis for climate. J Clim 15:1609–1625

    Article  Google Scholar 

  • Sanderson BM, Piani C, Ingram W, Stone D, Allen M (2008) Towards constraining climate sensitivity by linear analysis of feedback patterns in thousands of perturbed-physics GCM simulations. Clim Dyn 30:175–190. doi:10.1007/s00382-007-0280-7

    Article  Google Scholar 

  • Semmler T, Varghese S, McGrath R, Nolan P, Wang S, Lynch P, O’Dowd C (2008) Regional Climate model simulations of North Atlantic cyclones: frequency and intensity changes. Clim Res 36:1–16

    Article  Google Scholar 

  • Shen B-W, Atlas R, Chern J-D, Reale O, Lin S-J, Lee T, Chang J (2006a) The 0.125 degree finite-volume general circulation model on the NASA Columbia supercomputer: preliminary simulations of mesoscale vortices. Geophys Res Lett 33:L05801. doi:10.1029/2005GL024594

    Google Scholar 

  • Shen B-W, Atlas R, Reale O, Lin S-J, Chern J-D, Chang J, Henze C, Li J-L (2006b) Hurricane forecasts with a global mesoscale-resolving model: preliminary results with hurricane Katrina (2005). Geophys Res Lett 33:L13813. doi:10.1029/2006GL026143

    Article  Google Scholar 

  • Slingo J et al (1994) Mean climate and transience in the tropics of the UGAMP GCM: sensitivity to convective parameterization. Quart J R Meteorol Soc 120:881–922

    Article  Google Scholar 

  • Smith SD (1988) Coefficients for sea surface wind stress, heat, and wind profiles as a function of wind speed and temperature. J Geophys Res 93:15467–15472

    Article  Google Scholar 

  • Smith RK (2000) The role of cumulus convection in hurricanes and its representation in hurricane models. Rev Geophys 38:465–489. doi:10.1029/1999RG000080

    Article  Google Scholar 

  • Stowasser M, Wang Y, Hamilton K (2007) Tropical cyclone changes in the Western North Pacific in a global warming scenario. J Clim 20:2378–2396

    Article  Google Scholar 

  • Strachan J, Vidale PL, Hodges K, Roberts M, Demory M-E (2013) Investigating global tropical cyclone activity with a hierarchy of AGCMs: the role of model resolution. J Clim 26:133–152

    Article  Google Scholar 

  • Sugiura N, Awaji T, Masuda S, Mochizuki T, Toyoda T, Miyama T, Igarashi H, Ishikawa Y (2008) Development of a four-dimensional variational coupled data assimilation system for enhanced analysis and prediction of seasonal to interannual climate variations. J Geophys Res 113:C10017. doi:10.1029/2008JC004741

    Article  Google Scholar 

  • Walsh KJE, Ryan BF (2000) Tropical cyclone intensity increase near australia as a result of climate change. J Clim 13:3029–3036

    Article  Google Scholar 

  • Walsh KJE, Nguyen KC, McGregor JL (2004) Fine-resolution regional climate model simulations of the impact of climate change on tropical cyclones near Australia. Clim Dyn 22:47–56

    Article  Google Scholar 

  • Wang Y (2001) An explicit simulation of tropical cyclones with a triply nested movable mesh primitive equation model: TCM3. Part I: model description and control experiment. Mon Weather Rev 129:1370–1394

    Article  Google Scholar 

  • Wehner MF, Reed KA, Li F, Prabhat J, Bacmeister C-T, Chen C, Paciorek PJ, Gleckler KR, Sperber WD, Collins A Gettelman, Jablonowski C (2014) The effect of horizontal resolution on simulation quality in the Community Atmospheric Model, CAM5.1. J Adv Model Earth Syst 6:980–997. doi:10.1002/2013MS000276

    Article  Google Scholar 

  • Yamada Y, Oouchi K, Satoh M, Tomita H, Yanase W (2010) Projection of changes in tropical cyclone activity and cloud height due to greenhouse warming: global cloud-system-resolving approach. Geophys Res Lett 37:L07709. doi:10.1029/2010GL042518

    Article  Google Scholar 

  • Zeng X, Zhao M, Dickinson R-E (1998) Intercomparison of bulk aerodynamic algorithms for the computation of sea surface fluxes using TOGA COARE and TAO data. J Clim 11(10):2628–2644

    Article  Google Scholar 

  • Zeng Z-H, Wang Y, Duan Y-H, Chen L-S, Gao Z (2010) On sea surface roughness parameterization and its effect on tropical cyclone structure and intensity. Adv Atmos Sci 27:337–355

    Article  Google Scholar 

  • Zhang GJ, McFarlane NA (1995) Sensitivity of climate simulations to the parameterization of cumulus convection in the Canadian Climate Centre general circulation model. Atmos Ocean 33:407–446. doi:10.1080/07055900.1995.9649539

    Article  Google Scholar 

  • Zhang S, Harrison MJ, Rosati A, Wittenberg A (2007) System design and evaluation of coupled ensemble data assimilation for global oceanic climate studies. Mon Weather Rev 135:3541–3564

    Article  Google Scholar 

  • Zhao M, Held IM, Lin S-J, Vecchi GA (2009) Simulations of global hurricane climatology, interannual variability, and response to global warming using a 50-km resolution GCM. J Clim 22:6653–6678

    Article  Google Scholar 

  • Zhao M, Held IM, Lin S-J (2012) Some counterintuitive dependencies of tropical cyclone frequency on parameters in a GCM. J Atmos Sci 69:2272–2283. doi:10.1175/JAS-D-11-0238.1

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ramón Fuentes-Franco.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fuentes-Franco, R., Giorgi, F., Coppola, E. et al. Sensitivity of tropical cyclones to resolution, convection scheme and ocean flux parameterization over Eastern Tropical Pacific and Tropical North Atlantic Oceans in the RegCM4 model. Clim Dyn 49, 547–561 (2017). https://doi.org/10.1007/s00382-016-3357-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00382-016-3357-3

Keywords

Navigation