Skip to main content

Advertisement

Log in

Asymmetry in the response of central Eurasian winter temperature to AMO

  • Published:
Climate Dynamics Aims and scope Submit manuscript

Abstract

The asymmetry in the teleconnection of the central Eurasian winter surface air temperature (SAT) with the Atlantic multidecadal oscillation (AMO) is discussed using observations and model simulations. Observations indicate that the winter SAT over central Eurasia (30°–70°E, 30°–50°N) shows significant positive anomalies during the warm AMO period but weak and insignificant anomalies in the cold AMO period. In general, the warm winters in central Eurasia are associated with large-scale negative sea level pressure anomalies in Europe, anomalous southwesterly winds at 850 hPa over Europe, the “+ − +” geopotential height anomalies at 500 hPa in the south of Greenland, northern Europe, western Asia, and the slant north–south “+ −” pattern jet stream anomalies at 200 hPa in the north and south of the Caspian Sea. Reverse patterns occur during cold winters. These statistically significant features are observed in the warm phase of AMO. Reversed circulation anomalies are observed during the cold phase of AMO; however, these anomalies are weak and not statistically significant. Furthermore, the asymmetry in the atmospheric response to AMO is well supported by simulations with a suite of GFDL atmospheric model idealized experiments and four CMIP5 models historical experiments. Both observations and simulations indicate that Rossby waves propagating from the North Atlantic eastward to Eurasia emerge in the warm AMO and disappear in the cold AMO. Thus, the different propagations of Rossby waves, induced by the different surface thermal conditions of the warm and cold AMO, are the potential connection between the North Atlantic Ocean and central Eurasian climate, and may explain the asymmetry.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  • Baek HJ, Lee J, Lee HS, Hyun YK, Cho CH, Kwon WT, Marzin C, Gan SY, Kim MJ, Choi DH, Lee J, Lee J, Boo KO, Kang HS, Byun YH (2013) Climate change in the 21st century simulated by HadGEM2-AO under representative concentration pathways. Asia Pac J Atmos Sci 49:603–618

    Article  Google Scholar 

  • Booth BBB, Dunstone NJ, Halloran PR, Andrews T, Bellouin N (2012) Aerosols implicated as a prime driver of twentieth-century north Atlantic climate variability. Nature 484(7393):228–232

    Article  Google Scholar 

  • Branstator G (2002) Circumglobal teleconnections, the jet stream waveguide, and the North Atlantic oscillation. J Clim 15:1893–1910

    Article  Google Scholar 

  • Chen F, Ghil M (1996) Interdecadal variability in a hybrid coupled ocean-atmosphere model. J Phys Oceanogr 26:1561–1578

    Article  Google Scholar 

  • Cubasch U, Voss R, Hegerl GC, Waszkewitz J, Crowley TJ (1997) Simulation of the influence of solar radiation variations on the global climate with an ocean-atmosphere general circulation model. Clim Dyn 13:757–767

    Article  Google Scholar 

  • Davini P, Cagnazzo C, Neale R, Tribbia J (2012) Coupling between greenland blocking and the North Atlantic oscillation pattern. Geophys Res Lett. doi:10.1029/2012GL052315

    Google Scholar 

  • Delworth TL, Knutson TR (2000) Simulation of early 20th century global warming. Science 287:2246–2250

    Article  Google Scholar 

  • Delworth TL, Mann ME (2000) Observed and simulated multidecadal variability in the northern hemisphere. Clim Dyn 16:661–676

    Article  Google Scholar 

  • Delworth T, Manabe S, Stouffer RJ (1993) Interdecadal variations of the thermohaline circulation in a coupled ocean-atmosphere model. J Clim 6:1993–2011

    Article  Google Scholar 

  • Dijkstra HA, Raa LT, Schmeits M, Gerrits J (2006) On the physics of the Atlantic multidecadal oscillation. Ocean Dyn 56:36–50

    Article  Google Scholar 

  • Dima M, Lohmann G (2007) A hemispheric mechanism for the Atlantic multidecadal oscillation. J Clim 20:1706–2719

    Article  Google Scholar 

  • Dong BW, Sutton RT, Hodges K (2013) Variability of the North Atlantic summer storm track: mechanisms and impacts on European climate. Environ Res Lett. doi:10.1088/1748-9326/8/3/034037

    Google Scholar 

  • Eichelberger SJ, Hartmann DL (2007) Zonal jet structure and the leading mode of variability. J Clim 20:5149–5163

    Article  Google Scholar 

  • Enfield DB, Mestas-Nuñez AM, Trimble PJ (2001) The Atlantic multidecadal oscillation and its relation to rainfall and river flows in the continental U.S. Geophys Res Lett 28(10):2077–2080

    Article  Google Scholar 

  • Folland CK, Knight J, Linderholm HW, Fereday D, Ineson S, Jurrell JW (2009) The summer North Atlantic oscillation: past, present and future. J Clim 22:1082–1103

    Article  Google Scholar 

  • Gámiz-Fortis SR, Esteban-Parra MJ, Pozo-Vázquez D, Castro-Díez Y (2011) Variability of the monthly European temperature and its association with the Atlantic sea-surface temperature from interannual to multidecadal scales. Int J Climatol 31:2115–2140

    Article  Google Scholar 

  • Gao YQ, Wang HJ, Li SL (2013) Influences of the Atlantic Ocean on the summer precipitation of the southeastern Tibetan Plateau. J Geophys Res-Atmos 118:3534–3544

    Article  Google Scholar 

  • Gao YQ, Sun JQ, Li F, He SP, Stein S, Yan Q, Zhang ZS, Katja L, Noel K, Tore F, Suo LL (2014) Arctice sea ice and Eurasian climate: a review. Adv Atmos Sci 32:92–114

    Article  Google Scholar 

  • Gastineau G, Andrea FD, Frankignoul C (2013) Atmospheric response to the North Atlantic Ocean variability on seasonal to decadal time scales. Clim Dyn 40:2311–2330

    Article  Google Scholar 

  • Gerber EP, Vallis GK (2009) On the zonal structure of the North Atlantic oscillation and annular modes. J Atmos Sci 66:332–352

    Article  Google Scholar 

  • Gutzler D, Schubert S (2007) The U.S. CLIVAR Working Group on long-term drought. U.S. CLIVAR variations 5: U.S. CLIVAR Office, Washington, pp 6–7

  • Han Z, Li SL, Mu M (2011) The role of warm North Atlantic SST in the formation of positive height anomalies over the Ural Mountains during January 2008. Adv Atmos Sci 28:246–256

    Article  Google Scholar 

  • Harnik N, Galanti E, Martius O, Adam O (2014) The anomalous merging of the African and North Atlantic jet streams during the Northern hemisphere winter of 2010. J Clim 27:7319–7334

    Article  Google Scholar 

  • He SP, Wang HJ (2013) Oscillating relationship between the East Asian winter monsoon and ENSO. J Clim 26:9819–9838

    Article  Google Scholar 

  • Held IM (2000) The general circulation of the atmosphere. Introduction to general circulation theories. Program in geophysical fluid dynamics, woods hole oceanographic institution. http://gfd.whoi.edu/proceedings/2000/PDFvol2000.html

  • Hodson DLR, Sutton RT, Cassou C, Keenlyside N, Okumura Y, Zhou TJ (2010) Climate impacts of recent multidecadal changes in Atlantic Ocean Sea surface temperature: a nultimodel comparison. Clim Dyn 34:1041–1058

    Article  Google Scholar 

  • Holman KD, Lorenz DJ, Notaro M (2014) Influence of the background state on Rossby wave propagation into the great lakes region based on observations and model simulations. J Clim 27:9302–9322

    Article  Google Scholar 

  • Hoskins BJ, Karoly DJ (1981) The steady linear response of a spherical atmospheric to thermal and orographic forcing. J Atmos Sci 38:1179–1196

    Article  Google Scholar 

  • Hoskins BJ, James IN, White GH (1983) The shape, propagation and mean-flow interaction of large-scale weather systems. J Atmos Sci 40:1595–1612

    Article  Google Scholar 

  • Huss M, Hock R, Bauder A, Funk M (2010) 100-year mass changes in the Swiss Alps linked to the Atlantic multidecadal oscillation. Geophys Res Lett 37:L10501. doi:10.1029/2010GL042616

    Article  Google Scholar 

  • Ionita M, Lohmann G, Rimbu N, Chelcea S, Dima M (2012) Interannual to decadal summer drought variability over Europe and its relationship to global sea surface temperature. Clim Dyn 38:363–377

    Article  Google Scholar 

  • Ionita M, Rimbu N, Chelcea S, Patrut S (2013) Multidecadal variability of summer temperature over Romania and its relation with Atlantic multidecadal oscillation. Theor Appl Climatol 113:305–315

    Article  Google Scholar 

  • Jacobeit J, Wanner H, Luterbacher J, Beck C, Philipp A, Sturm K (2003) Atmospheric circulation variability in the North-Atlantic-European area since the mid-seventeenth century. Clim Dyn 20:341–352. doi:10.1007/s0382-002-0278-0

    Google Scholar 

  • Johannessen OM, Bengtsson L, Miles MW, Kuzmina SI, Semenov VA, Alekseev GV, Nagurnyi AP, Zakharov VF, Bobylev LP, Pettersson LH, Hasselmann K, Cattle HP (2004) Arctic climate change: observed and modelled temperature and sea-ice variability. Tellus A 56:328–341

    Article  Google Scholar 

  • Junge MM, Stephenson DB (2003) Mediated and direct effects of the North Atlantic Ocean on winter temperatures in Northwest Europe. Int J Climatol 23:245–261

    Article  Google Scholar 

  • Kalnay E et al (1996) The NCEP/NCAR 40-year reanalyses project. Bull Am Meteorol Soc 77:437–471

    Article  Google Scholar 

  • Kavvada A, Ruiz-Barradas A, Nigam S (2013) AMO’s structure and climate footprint in observations and IPCC AR5 climate simulations. Clim Dyn 41:1345–1364. doi:10.1007//s00382-013-1712-1

    Article  Google Scholar 

  • Knight JR, Allan RJ, Folland CK, Vellinga M, Mann ME (2005) A signature of persistent natural thermohaline circulation cycles in observed climate. Geophys Res Lett 32:L20708. doi:10.1029/2005GL024233

    Article  Google Scholar 

  • Knight JR, Folland CK, Scaife AA (2006) Climate impacts of the Atlantic multidecadal oscillation. Geophys Res Lett 33:L17706. doi:10.1029/2006GL026242

    Article  Google Scholar 

  • Knudsen MF, Seidenkrantz MS, Jacobsen BH, Kuijpers A (2011) Tracking the Atlantic multidecadal oscillation through the last 8000 years. Nat Commun. doi:10.1038/ncomms1186

    Google Scholar 

  • Kunshir Y (1994) Interdecadal variations in North Atlantic Sea surface temperature and associated atmospheric conditions. J Clim 7:141–157

    Article  Google Scholar 

  • Li SL, Bates GT (2007) Influence of the Atlantic multidecadal oscillation on the winter climate of East China. Adv Atmos Sci 24:126–135

    Article  Google Scholar 

  • Li SL, Luo FF (2013) Lead–lag connection of the Atlantic Multidecadal Oscillation (AMO) with East Asian surface air temperatures in instrumental records. Atmos Ocean Sci Lett 6:138–143

    Article  Google Scholar 

  • Li XC, Gerber EP, Holland DM, Yoo C (2015) A Rossby wave bridge from the tropical Atlantic to West Antarctica. J Clim 28:2256–2273

    Article  Google Scholar 

  • Liu G, Ji LR, Wu RG (2012a) An east-west SST anomaly pattern in the midlatitude North Atlantic Ocean associated with winter precipitation variability over eastern China. J Geophys 117:D15104. doi:10.1029/2012JD017960

    Google Scholar 

  • Liu JP, Curry JA, Wang HJ, Song M, Horton RM (2012b) Impact of declining Arctic sea ice on winter snowfall. Proc Natl Acad Sci. doi:10.1073/pnas.1114910109

    Google Scholar 

  • Losada T, Rodríguez-Fonseca B, Mechoso CR, Ma HY (2007) Impacts of SST anomalies on the North Atlantic atmospheric circulation: a case study for the northern winter 1995/1996. Clim Dyn. doi:10.1007/s00382-007-0261-x

    Google Scholar 

  • Lu RY, Dong BW, Ding H (2006) Impact of the Atlantic multidecadal oscillation on the Asian summer monsoon. Geophys Res Lett 33:L24701. doi:10.1029/2006GL027655

    Article  Google Scholar 

  • Mahajan S, Zhang R, Delworth TL (2011) Impact of the Atlantic Meridional Overturning Circulation (AMOC) on Arctic surface air temperature and sea ice variability. J Clim 24:6573–6581

    Article  Google Scholar 

  • Manola I, Selten F, de Vries H, Hazeleger W (2013) Waveguidability of idealized jets. J Geophys Res Atmos 118(18):10–432

    Article  Google Scholar 

  • McCabe GJ, Palecki MA, Betancourt JL (2004) Pacific and Atlantic Ocean influences on multidecadal drought frequency in the United States. Proc Natl Acad Sci USA 101:4136–4141

    Article  Google Scholar 

  • Mitchell TD, Jones PD (2005) An improved method of constructing a database of monthly climate observations and associated high-resolution grids. Int J Climatol 25:693–712

    Article  Google Scholar 

  • Msadek R, Frankignoul C (2009) Atlantic multidecadal oceanic variability and its influence on the atmosphere in acclimate model. Clim Dyn 33:45–62

    Article  Google Scholar 

  • Msadek R, Frankignoul C, Li LZX (2011) Mechanisms of the atmospheric response to North Atlantic multidecadal variability: a model study. Clim Dyn 36:1255–1276

    Article  Google Scholar 

  • O’Rourke A, Vallis GK (2013) Jet interaction and the influence of a minimum phase speed bound on the propagation of eddies. J Atmos Sci 70:2614–2628

    Article  Google Scholar 

  • Otterå OH, Bentsen M, Drange H, Suo LL (2010) External forcing as a metronome for Atlantic multidecadal variability. Nat Geosci 3:688–694. doi:10.1038/ngeo955

    Article  Google Scholar 

  • Palmer TN, Sun ZB (1985) A modelling and observational study of the relationship between sea surface temperature in the north-west Atlantic and the atmospheric general circulation. Quart J R Met Soc 111:947–975

    Article  Google Scholar 

  • Panetta RL (1993) Zonal jets in wide baroclinically unstable regions: persistence and scale selection. J Atmos Sci 50:2073–2106

    Article  Google Scholar 

  • Peings Y, Magnusdottir G (2014) Forcing of the wintertime atmospheric circulation by the multidecadal fluctuations of the North Atlantic ocean. Environ Res Lett. doi:10.1088/1748-9326/9/3/034018

    Google Scholar 

  • Perez J, Menendez M, Mendez FJ, Losada IJ (2014) Evaluating the performance of CMIP3 and CMIP5 global climate models over the north-east Atlantic region. Clim Dyn 43:2663–2680

    Article  Google Scholar 

  • Pinto JG, Zacharias S, Fink AH, Leckebusch GC, Ulbrich U (2009) Factors contributing to the development of extreme North Atlantic cyclones and their relationship with the NAO. Clim Dyn 33:711–737

    Article  Google Scholar 

  • Ratcliffe RAS, Murray R (1970) New lag associations between North Atlantic sea temperature and European pressure applied to long-range weather forecasting. Quart J R Met Soc 96:226–246

    Article  Google Scholar 

  • Rayner NA, Parker DE, Horton EB, Folland CK, Alexander LV, Rowell DP, Kent EC, Kaplan A (2003) Global analyses of sea surface temperature, sea ice, and night marine air temperature since the late nine tenth century. J Geophys Res. doi:10.1029/2002JD002670

    Google Scholar 

  • Rodwell MJ, Rowell DP, Folland CK (1999) Oceanic forcing of the wintertime North Atlantic oscillation and European climate. Nature 198:320–323

    Article  Google Scholar 

  • Ruiz-Barradas A, Nigam S, Kavvada A (2013) The Atlantic Multidecadal Oscillation in twentieth century climate simulations: uneven progress from CMIP3 to CMIP5. Clim Dyn 41:3301–3315

    Article  Google Scholar 

  • Sardeshmukh PD, Prashant D, Hoskins BJ (1987) The generation of global rotational flow by steady idealized tropical divergence. J Atmos Sci 45:1228–1251

    Article  Google Scholar 

  • Schlesinger ME, Ramankutty N (1994) An oscillation in the global climate system of period 65–70 years. Nature 367:723–726

    Article  Google Scholar 

  • Shubert S et al (2009) A U.S. CLIVAR project to assess and compare the responses of global climate models to drought-related SST forcing Patterns: overview and results. J Clim 22:5251–5272

    Article  Google Scholar 

  • Son SW, Lee S (2005) The response of westerly jets to thermal driving in a primitive equation model. J Atmos Sci 62:3741–3757

    Article  Google Scholar 

  • Sun JQ, Wang HJ (2012) Changes of the connection between the summer North Atlantic Oscillation and the East Asian summer rainfall. J Geophys Res 117:D08110. doi:10.1029/2012JD017482

    Google Scholar 

  • Sun JQ, Wang HJ, Wei Y (2008) Decadal variations of the relationship between the summer North Atlantic oscillation and middle East Asian air temperature. J Geophys Res 113:D15107. doi:10.1029/2007JD009626

    Article  Google Scholar 

  • Sun JQ, Wang HJ, Wei Y (2009) Role of the tropical Atlantic sea surface temperature in the decadal change of the summer North Atlantic Oscillation. J Geophys Res 114:D20110. doi:10.1029/2009JD012395

    Article  Google Scholar 

  • Sun YB, Clemens SC, Morrill C, Lin XP, Wang XL, An ZS (2011) Influence of Atlantic meridional overturning circulation on the East Asian winter monsoon. Nat Geosci. doi:10.1038/NGEO1326

    Google Scholar 

  • Sutton RT, Dong BW (2012) Atlantic Ocean influence on a shift in European climate in the 1990s. Nat Geosci. doi:10.1038/NGEO1595

    Google Scholar 

  • Sutton RT, Hodson DLR (2005) Atlantic ocean forcing of North American and European summer climate. Science 309:115–118

    Article  Google Scholar 

  • Sutton RT, Hodson DLR (2007) Climate response to basin-scale warming and cooling of the North Atlantic Ocean. J Clim 20:891–907

    Article  Google Scholar 

  • Takaya K, Nakamura H (2001) A formulation of a phase independent wave-activity flux for stationary and migratory quasi-geostrophic eddies on a zonally varying basic flow. J Atmos Sci 58:608–627

    Article  Google Scholar 

  • Tian BQ, Fan K (2015) A skillful prediction model for winter NAO based on Atlantic sea surface temperature and Eurasian snow cover. Wea Forcasting 30:197–205

    Article  Google Scholar 

  • Uppala SM et al (2005) The ERA-40 re-analysis. Quart J Roy Meteor Soc 131:2961–3012

    Article  Google Scholar 

  • Velasco VM, Mendoza B (2008) Assessing the relationship between solar activity and some large scale climatic phenomena. Adv Space Res 42:866–878

    Article  Google Scholar 

  • Wang HJ, He SP (2012) Weakening relationship between East Asian winter monsoon and ENSO after mid-1970s. Chinese Sci Bull 57:3535–3540

    Article  Google Scholar 

  • Wang HJ, He SP, Liu JP (2013) Present and future relationship between the East Asian winter monsoon and ENSO: results of CMIP5. J Geophys Res Ocean 118:1–16

    Google Scholar 

  • Wei Y, Sun JQ (2009) Enhancement of the summer North Atlantic oscillation influence on Northern hemisphere air temperature. Adv Atmos Sci 26:1029–1214

    Google Scholar 

  • Woollings T (2010) Dynamical influences on European climate: an uncertain future. Phil Trans R Soc A 368:3733–3756. doi:10.1098/rsta.2010.0040

    Article  Google Scholar 

  • Woollings T, Hoskins B, Blackburn M, Berrisford P (2008) A new Rossby wave-breaking interpretation of the North Atlantic oscillation. J Atmos Sci 65:609–626

    Article  Google Scholar 

  • Zhang R, Delworth TL (2006) Impact of Atlantic multidecadal oscillations on Indian rainfall and Atlantic hurricanes. Geophys Res Lett 33:L17712. doi:10.1029/2006GL026267

    Article  Google Scholar 

  • Zhang LP, Wang CZ (2013) Multidecadal North Atlantic sea surface temperature and Atlantic meridional overturning circulation variability in CMIP5 historical simulations. J Geophys Res Oceans 118:5772–5791

    Article  Google Scholar 

  • Zhou M, Wang HJ, Yang S, Fan K (2013) Influence of springtime North Atlantic oscillation on crops yields in Northeast China. Clim Dyn 41:3317–3324

    Article  Google Scholar 

Download references

Acknowledgments

This research was supported by the National Natural Science Foundation of China (Grants 41421004 and 41210007).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xin Hao.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hao, X., He, S. & Wang, H. Asymmetry in the response of central Eurasian winter temperature to AMO. Clim Dyn 47, 2139–2154 (2016). https://doi.org/10.1007/s00382-015-2955-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00382-015-2955-9

Keywords

Navigation