Skip to main content

Advertisement

Log in

Evaluating the performance of CMIP3 and CMIP5 global climate models over the north-east Atlantic region

  • Published:
Climate Dynamics Aims and scope Submit manuscript

Abstract

One of the main sources of uncertainty in estimating climate projections affected by global warming is the choice of the global climate model (GCM). The aim of this study is to evaluate the skill of GCMs from CMIP3 and CMIP5 databases in the north-east Atlantic Ocean region. It is well known that the seasonal and interannual variability of surface inland variables (e.g. precipitation and snow) and ocean variables (e.g. wave height and storm surge) are linked to the atmospheric circulation patterns. Thus, an automatic synoptic classification, based on weather types, has been used to assess whether GCMs are able to reproduce spatial patterns and climate variability. Three important factors have been analyzed: the skill of GCMs to reproduce the synoptic situations, the skill of GCMs to reproduce the historical inter-annual variability and the consistency of GCMs experiments during twenty-first century projections. The results of this analysis indicate that the most skilled GCMs in the study region are UKMO-HadGEM2, ECHAM5/MPI-OM and MIROC3.2(hires) for CMIP3 scenarios and ACCESS1.0, EC-EARTH, HadGEM2-CC, HadGEM2-ES and CMCC-CM for CMIP5 scenarios. These models are therefore recommended for the estimation of future regional multi-model projections of surface variables driven by the atmospheric circulation in the north-east Atlantic Ocean region.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  • Belleflamme A, Fettweis X, Lang C, Erpicum M (2012) Current and future atmospheric circulation at 500 hPa over Greenland simulated by the CMIP3 and CMIP5 global models. Clim Dyn. doi:10.1007/s00382-012-1538-2

    Google Scholar 

  • Brands S, Herrera S, San-Martín D, Gutiérrez JM (2011) Validation of the ENSEMBLES global climate models over southwestern Europe using probability density functions, from a downscaling perspective. Clim Res 48:145–161

    Article  Google Scholar 

  • Brands S, Herrera S, Fernández J, Gutiérrez JM (2013) How well do CMIP5 earth system models simulate present climate conditions in Europe and Africa? Clim Dyn. doi:10.1007/s00382-013-1742-8

    Google Scholar 

  • Busuioc A, Chen D, Hellström C (2001) Performance of statistical downscaling models in GCM validation and regional climate change estimates: application for Swedish precipitation. Int J Climatol 21(5):557–578

    Article  Google Scholar 

  • Cattiaux J, Douville H, Peings Y (2013) European temperatures in CMIP5: origins of present-day biases and future uncertainties. Clim Dyn. doi:10.1007/s00382-013-1731-y

    Google Scholar 

  • Compo GP, Whitaker JS, Sardeshmukh PD, Matsui N, Allan RJ, Yin X, Gleason BE et al (2011) The twentieth century reanalysis project. Q J Roy Meteor Soc 137(654):1–28. doi:10.1002/qj.776

    Article  Google Scholar 

  • Errasti I, Ezcurra A, Sáenz J, Ibarra-Berastegi G (2011) Validation of IPCC AR4 models over the Iberian Peninsula. Theor Appl Climatol 103(1–2):61–79. doi:10.1007/s00704-010-0282-y

    Article  Google Scholar 

  • Flato GM (2011) Earth system models: an overview. Wiley Interdiscip Rev Clim Change 2(6):783–800

    Article  Google Scholar 

  • Frías MD, Zorita E, Fernández J, Rodríguez-Puebla C (2006) Testing statistical downscaling methods in simulated climates. Geophys Res Lett 33:L19807. doi:10.1029/2006GL027453

  • Gerber EP, Polvani LM, Ancukiewicz D (2008) Annular mode time scales in the Intergovernmental Panel on Climate Change Fourth Assessment Report models. Geophys Res Lett 35(22):L22707. doi:10.1029/2008GL035712

    Article  Google Scholar 

  • Gleckler PJ, Taylor KE, Doutriaux C (2008) Performance metrics for climate models. J Geophys Res 113(D6):D06104

    Google Scholar 

  • Hurrell JW, Kushnir Y, Ottersen G, Visbeck M (2003) An overview of the North Atlantic oscillation. Geophysical Monogr Am Geophys Union 134:1–36

    Google Scholar 

  • Huth R (2000) A circulation classification scheme applicable in GCM studies. Theoret Appl Climatol 67(1–2):1–18

    Article  Google Scholar 

  • IPCC (2007) Climate change 2007: the physical science basis. In: Solomon S, Qin D, Manning M, Chen Z, Marquis M, Averyt KB, Tignor M, Miller HL (eds) Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change

  • Izaguirre C, Menéndez M, Camus P, Méndez FJ, Mínguez R, Losada IJ (2012) Exploring the interannual variability of extreme wave climate in the Northeast Atlantic Ocean, Ocean Model

  • Kalnay EM, Kanamitsu R, Kistler W, Collins D, Deaven L, Gandin M, Iredell S, Saha G, White J, Woollen Y, Zhu M, Chelliah W, Ebisuzaki W, Higgins J, Janowiak KC, Mo C, Ropelewski J, Wang A, Leetmaa R, Reynolds R, Jenne R, Joseph D (1996) The NCEP/NCAR 40-year reanalysis project. Bull Am Meteorol Soc 77:437–470

    Article  Google Scholar 

  • Lee CC, Sheridan SC (2012) A six-step approach to developing future synoptic classifications based on GCM output. Int J Climatol 32(12):1792–1802

    Article  Google Scholar 

  • Lorenzo MN, Ramos AM, Taboada JJ, Gimeno L (2011) Changes in present and future circulation types frequency in northwest Iberian Peninsula. PLoS ONE 6(1):e16201

    Article  Google Scholar 

  • MacQueen J (1967) Some methods for classification and analysis of multivariate observations. In: Proceedings of the fifth Berkeley symposium on mathematical statistics and probability (Vol. 1, No. 281–297, p 14)

  • Marcos M, Jordà J, Gomis D, Pérez B (2011) Changes in storm surges in southern Europe from a regional model under climate change scenarios. Glob Planet Change 77(3–4):116–128

    Article  Google Scholar 

  • Maxino CC, McAvaney BJ, Pitman AJ, Perkins SE (2008) Ranking the AR4 climate models over the Murray Darling Basin using simulated maximum temperature, minimum temperature and precipitation. Int J Climatol 28:1097–1112

    Article  Google Scholar 

  • Meehl GA, Covey C, Taylor KE, Delworth T, Stouffer RJ, Latif M, McAvaney B et al (2007) The WCRP CMIP3 multimodel dataset: a new era in climate change research. Bull Am Meteorol Soc 88(9):1383–1394. doi:10.1175/BAMS-88-9-1383

    Article  Google Scholar 

  • Moss RH, Edmonds JA, Hibbard KA, Manning MR, Rose SK, van Vuuren DP, Carter TR, Emori S, Kainuma M, Kram T et al (2010) The next generation of scenarios for climate change research and assessment. Nature 463:747–756

    Google Scholar 

  • Nakicenovic N et al (2000) IPCC Special Report on emissions scenarios. Cambridge University Press, Cambridge, p 599

    Google Scholar 

  • Nieto S, Rodríguez-Puebla C (2006) Comparison of precipitation from observed data and general circulation models over the Iberian Peninsula. J Clim 1992:4254–4275

    Article  Google Scholar 

  • Pastor MA, Casado MJ (2012) Use of circulation types classifications to evaluate AR4 climate models over the Euro-Atlantic region. Clim Dyn 39(7–8):2059–2077

    Article  Google Scholar 

  • Perkins SE, Pitman AJ, Holbrook NJ, McAneney J (2007) Evaluation of the AR4 climate models’ simulated daily maximum temperature, minimum temperature and precipitation over Australia using probability density functions. J Clim 20:4356–4376

    Article  Google Scholar 

  • Reichler T, Kim J (2008) How well do coupled models simulate today’s climate. Bull Am Meteorol Soc 89(3):303

    Article  Google Scholar 

  • Rodríguez-Puebla C, Nieto S (2010) Trends of precipitation over the Iberian Peninsula and the North Atlantic Oscillation under climate change conditions. Int J Climatol 30(12):1807–1815

    Google Scholar 

  • Rodríguez-Puebla C, Ayuso SM, Frias MD, Garcia-Casado LA (2007) Effects of climate variation on winter cereal production in Spain. Climate Res 34(3):223

    Article  Google Scholar 

  • Seager R, Kushnir Y, Nakamura J, Ting M, Naik N (2010) Northern Hemisphere winter snow anomalies: ENSO, NAO and the winter of 2009/10. Geophys Res Lett 37:L14703. doi:10.1029/2010GL043830

  • Snarey M, Terrett NK, Willett P, Wilton DJ (1997) Comparison of algorithms for dissimilarity-based compound selection. J Mol Graphics Modell 15(6):372–385

    Article  Google Scholar 

  • Su F, Duan X, Chen D, Hao Z, Cuo L (2013) Evaluation of the global climate models in the CMIP5 over the Tibetan Plateau. J Clim 26:3187–3208. http://dx.doi.org/10.1175/JCLI-D-12-00321.1

    Google Scholar 

  • Taylor KE, Stouffer RJ, Meehl GA (2012) An overview of CMIP5 and the experiment design. Bull Am Meteorol Soc 93(4):485–498

    Article  Google Scholar 

  • Uppala SM, KÅllberg PW, Simmons AJ, Andrae U, Bechtold VDC, Fiorino M, Gibson JK et al (2005) The ERA-40 re-analysis. Q J Roy Meteor Soc 131(612):2961–3012. doi:10.1256/qj.04.176

    Article  Google Scholar 

  • van der Linden P, Mitchell JFB (eds) (2009) ENSEMBLES: climate change and its impacts: summary of research and results from the ENSEMBLES project. Met Office Hadley Centre, FitzRoy Road, Exeter EX1 3 PB, UK. p 160

  • van Vuuren DP, Edmonds J, Kainuma MLT, Riahi K, Thomson A, Matsui T, Hurtt G, Lamarque J.-F., Meinshausen M, Smith S, Grainer C, Rose S, Hibbard KA, Nakicenovic N, Krey V, Kram T (2011) Representative concentration pathways: An overview. Climatic Change, 1–27. doi:10.1007/s10584-011-0148-z

  • von Storch H, Zorita E, Cubasch U (1993) Downscaling of global climate change estimates to regional scales: an application to Iberian rainfall in wintertime. J Climate 6(6):1161–1171

    Article  Google Scholar 

  • Walsh JE, Chapman WL, Romanovsky V, Christensen JH, Stendel M (2008) Global climate model performance over Alaska and Greenland. J Clim 21(23):6156–6174

    Google Scholar 

  • Yin L, Fu R, Shevliakova E, Dickinson RE (2012) How well can CMIP5 simulate precipitation and its controlling processes over tropical South America? Clim Dyn. doi:10.1007/s00382-012-1582-y

    Google Scholar 

Download references

Acknowledgments

The work was partly funded by the projects iMar21 (CTM2010-15009) and GRACCIE (CSD2007-00067) from the Spanish government and the FP7 European project CoCoNet (287844). The authors would like to acknowledge the climate modeling groups which have generated the data used in this study, as well as the PCMDI and WDCC for facilitating access to it. The authors would like to thank the anonymous reviewers and B. P. Gouldby for their valuable comments and suggestions to improve the quality of the paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Melisa Menendez.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Perez, J., Menendez, M., Mendez, F.J. et al. Evaluating the performance of CMIP3 and CMIP5 global climate models over the north-east Atlantic region. Clim Dyn 43, 2663–2680 (2014). https://doi.org/10.1007/s00382-014-2078-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00382-014-2078-8

Keywords

Navigation