Skip to main content
Log in

North Atlantic atmospheric circulation and surface wind in the Northeast of the Iberian Peninsula: uncertainty and long term downscaled variability

  • Published:
Climate Dynamics Aims and scope Submit manuscript

Abstract

The variability and predictability of the surface wind field at the regional scale is explored over a complex terrain region in the northeastern Iberian Peninsula by means of a downscaling technique based on Canonical Correlation Analysis. More than a decade of observations (1992–2005) allows for calibrating and validating a statistical method that elicits the main associations between the large scale atmospheric circulation over the North Atlantic and Mediterranean areas and the regional wind field. In an initial step the downscaling model is designed by selecting parameter values from practise. To a large extent, the variability of the wind at monthly timescales is found to be governed by the large scale circulation modulated by the particular orographic features of the area. The sensitivity of the downscaling methodology to the selection of the model parameter values is explored, in a second step, by performing a systematic sampling of the parameters space, avoiding a heuristic selection. This provides a metric for the uncertainty associated with the various possible model configurations. The uncertainties associated with the model configuration are considerably dependent on the spatial variability of the wind. While the sampling of the parameters space in the model set up moderately impact estimations during the calibration period, the regional wind variability is very sensitive to the parameters selection at longer timescales. This fact illustrates that downscaling exercises based on a single configuration of parameters should be interpreted with extreme caution. The downscaling model is used to extend the estimations several centuries to the past using long datasets of sea level pressure, thereby illustrating the large temporal variability of the regional wind field from interannual to multicentennial timescales. The analysis does not evidence long term trends throughout the twentieth century, however anomalous episodes of high/low wind speeds are identified.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

Notes

  1. http://www.cpc.ncep.noaa.gov/data/teledoc/telecontents.shtml.

References

  • Allan R, Ansell T (2006) A new globally complete monthly historical gridded mean sea level pressure dataset (HadSLP2): 18502004. J Clim 19:5816–5842

    Article  Google Scholar 

  • Barnett TP, Preisendorfer RW (1987) Origin and levels of monthly and seasonal forecast skill for United States air temperature determined by canonical correlation analysis. Mon Wea Rev 115:1825–1850

    Article  Google Scholar 

  • Barnston A, Livezey R (1987) Classification, seasonality and persistence of low-frequency atmospheric circulation patterns. Mon Wea Rev 115(6):1083–1116

    Article  Google Scholar 

  • Benestad R (2002) Empirical downscaled temperatue scenarios for northern Europe based on a multi-model ensemble. Clim Res 21:105–125

    Article  Google Scholar 

  • Bianco L, Tomassetti E, Coppola E, Fracassi A, Verdecchia M, Visconti G (2006) Thermally driven circulation in a region of complex topography: comparison of wind-profiling radar measurements and mm5 numerical predictions. Ann Geophys 24:1537–1549

    Article  Google Scholar 

  • Burlando M (2009) The synoptic-scale surface wind climate regimes of the Mediterranean sea according to the cluster analysis of ERA-40 wind fields. Theor Appl Climatol 96:69–83

    Article  Google Scholar 

  • Busuioc A, Tomozeieu R, Cacciamani C (2008) Statistical downscaling model based on canonical correlation analysis for winter extreme precipitation events in the Emilia-Romagna region. Int J Climatol 28(4):449–464

    Article  Google Scholar 

  • Buzzi A, D’Isidoro M, Davolio S (2003) A case study of an orographic cyclone south of the Alps during the mAP SOP. Q J R Meteorol Soc 129:1795–1818

    Article  Google Scholar 

  • Caires S, Sterl A (2004) 100-year return value estimates for ocean wind speed and significant wave height from the ERA-40 data. J Clim 18:1032–1048

    Article  Google Scholar 

  • Conil S, Hall A (2006) Local regimes of atmospheric variability: a case study of southern california. J Clim 19-17:4308–4325

    Article  Google Scholar 

  • Davis R, Hayden B, Gay D, Phillips W, Jones G (1996) The North Atlantic subtropical anticyclone. J Clim 10:1788–1806

    Google Scholar 

  • Denman K, Brasseur G, Chidthaisong A, Ciais P, Cox P, Dickinson R, Hauglustaine D, Heinze C, Holland E, Jacob D, Lohmann U, Ramachandran S, da Silva Dias P, Wofsy S, Zhang X (2007) Couplings between changes in the climate system. In: Solomon S et al (eds.) Climate change 2007: the physical science basis. Contribution of working group I to the fourth assessment report of the intergovernmental panel on climate change. Cambridge University Press, Cambridge

  • Dibike Y, Gachon P, St-Hilaire A, Ouarda T, Nguyen VTV (2008) Uncertainty analysis of statistically temperature and precipitation regimes in northern Canada. Theor Appl Climatol 91:149–170

    Article  Google Scholar 

  • Fernández J, Saenz J (2003) Improved field reconstruction with the analog method: searching the CCA space. Cli Res 24:199–213

    Article  Google Scholar 

  • Fernández J, Montávez J, Saenz J, González-Rouco J, Zorita E (2007) Sensitivity of the MM5 mesoscale model to physical parameterizations for regional climate studies: annual cycle. J Geophys Res 112. doi:10.1029/2005JD006,649

  • Fisher E, Seneviratne I, Lüthi D, Schär C (2007) Contribution of land-atmosphere coupling to recent European summer heat waves. Geophys Res Lett 34:L06,707

    Google Scholar 

  • Furrer R, Sain S, Nychka D, Meehl G (2007) Multivariate bayesian analysis of atmosphere-ocean general circulation models. Environ Scol Stat 14:249–266

    Article  Google Scholar 

  • García-Bustamante E, González-Rouco JF, Jiménez PA, Navarro J, Montávez JP (2008) The influence of the Weibull assumption in monthly wind. Wind Ener 11:483–502

    Article  Google Scholar 

  • García-Bustamante E, González-Rouco JF, Jiménez PA, Navarro J, Montávez JP (2009) A comparison of methodologies for monthly wind energy estimations. Wind Ener 12:640–659

    Article  Google Scholar 

  • Gerstengarbe BOFW, Werner P (2008) A resampling scheme for regional climate simulations and its performance compared to a dynamical RCM. Theor Appl Climatol 92:209–223

    Article  Google Scholar 

  • Glahn H (1968) Canonical correlation and its relationship to discriminant analysis and multiple regression. J Atmos Sci 25:23–31

    Article  Google Scholar 

  • González-Rouco J, Heyen H, Zorita E, Valero F (2000) Agreement between observed rainfall trends and climate change simulations in the southwest of Europe. J Clim 13:3057–3065

    Article  Google Scholar 

  • Grimenes A, Thue-Hansen V (2004) Annual variation of surface roughness obtained from wind profiles measurements. Theor App Climatol 79(1-2):93–102

    Article  Google Scholar 

  • Hanssen-Bauer I, Achberger C, Benestad R, Chen D, Førland E (2005) Statistical downscaling of climate scenarios over Scandinavia. Clim Res 29:255–268

    Article  Google Scholar 

  • Hong S, Kalnay E (2000) Role of sea surface temperature and soil-moisture feedback in the Oklahoma-Texas drought. Nat Biotechnol 408(6814):842–844

    Google Scholar 

  • Hotelling H (1935) The most predictable criterion. J Educ Psychol 26:139–142

    Article  Google Scholar 

  • Hotelling H (1936) Relations between two sets of variables. Biometrika 28:321–377

    Google Scholar 

  • Huth R (2000) Statistical downscaling in Central Europe: evaluation of methods and potential predictors. Clim Res 13:91–101

    Article  Google Scholar 

  • Huth R (2002) Statistical downscaling of daily temperature in Central Europe. J Clim 1:1731–1742

    Article  Google Scholar 

  • Huth R (2004) Sensitivity of local daily temperature change estimates to the selection of downscaling models and predictors. J Clim 17:640–652

    Article  Google Scholar 

  • Jakobs H, Feldman H, Hass H (1995) The use of nested models for air-pollution studies—an application of the EURAD model to a SANA episode. J Appl Meteorol 34(6):1301–1319

    Article  Google Scholar 

  • Jiménez PA, González-Rouco JF, Montávez JP, García-Bustamante E, Navarro J (2008a) Climatology of wind patterns in the Northeast of the Iberian Peninsula. Int J Climatol 29:501–525

    Article  Google Scholar 

  • Jiménez PA, González-Rouco JF, Montávez JP, Navarro J, García-Bustamante E, Valero F (2008b) Surface wind regionalization in a complex terrain region. J Appl Meteorol Clim 47:308–325. doi:10.1175/2007JAMC1483.1

    Article  Google Scholar 

  • Jiménez PA, González-Rouco JF, García E, Montávez JP, García-Bustamante E, Navarro J (2010a) Quality-control and bias correction of high resolution surface wind observations from automated weather stations. J Atmos Oceanic Tech A 27:1101–1122

    Article  Google Scholar 

  • Jiménez PA, González-Rouco JF, García-Bustamante E, Navarro J, Montávez JP, de Arellano JVG, Dudhia J, Roldán A (2010b) Surface wind regionalization over complex terrain: evaluation and analysis of a high resolution WRF numerical simulation. J Appl Meteorol Climatol 49:268–287

    Article  Google Scholar 

  • Kaas E, Li T, Schmith T (1996) Statistical hindcast of wind climatology in the North Atlantic and northwestern European region. Clim Res 7:97–110

    Article  Google Scholar 

  • Kaiser H (1960) The application of electronic computers to factor analysis. Educ Psychol Mesure 20:141–151

    Article  Google Scholar 

  • Kariniotakis G, Pinson P, Siebert N, Giebel G, Barthelmie R (2004) The state of the art in short-term prediction of wind power-from an offshore perspective. In: Proceedings of 2004 SeaTech Week

  • Koukidis EN, Berg AA (2009) Sensitivity of the statistical downscaling model (SDSM) to reanalysis products. Atmos Ocean. doi:10.3137/AO924.2009

  • Lenderink G, van Ulden A, van den Hurk B, Keller F (2007) A study on combining global and regional climate model results for generating climate scenarios of temperature and precipitation for the Netherlands. Clim Dyn 32:157–176

    Article  Google Scholar 

  • Levine M (1977) Canonical analysis and factor comparison. Sage University Publications, Beverly Hills

    Google Scholar 

  • Luterbacher J, Xoplaki E, Dietrich D, Rickli R, Jacobeit J, Beck C, Gyalistras D, Schmutz C, Wanner H (2002) Sea level pressure fields over the eastern North Atlantic and Europe back to 1500. Clim Dyn 18:545–561

    Google Scholar 

  • Matulla C, Scheifinger H, Menzel A, Koch E (2003) Exploring two methods for statistical downscaling of Central Europe phenological time series. Int J Biometeorol 48:56–64

    Article  Google Scholar 

  • Maurer EP, Hidalgo HG (2007) Utility of daily vs. monthly large-scale climate data: an intercomparison of two statistical downscaling methods. Hydrol Earth Syst Sci Discuss 4:3413–3440

    Article  Google Scholar 

  • McKendry I, Stahl K, Moore R (2006) Synoptic sea-level pressure patterns generated by a general circulation model: Comparison with types derived from NCEP/NCAR re-analysis and implications for downscaling. Int J Climatol 26:1727–1736

    Article  Google Scholar 

  • Michaelsen J (1987) Cross-validation in statistical climate forecast models. J Clim App Meteorol 26:1589–1600

    Article  Google Scholar 

  • Mitchell T, Hulme M (1999) Predicting regional climate change: living with uncertainty. Prog Phys Geograph 23(1):57–78

    Google Scholar 

  • Najac J, Boé J, Terray L (2009) A multi-model ensemble approach for assessment of climate change impact on surface winds in france. Clim Dyn 32:615–634

    Article  Google Scholar 

  • Nakicenovic N, Alcamo J, Davis G, de Vries B, Fenhann J, Gaffin S, Gregory K, Grübler A et al (eds) (2000) Special report on emissions scenarios. Working group III, intergovernmental panel on climate change (IPCC). Cambridge University Press

  • North G, Bell T, Calahan R, Moeng F (1982a) Sampling errors in the estimation of empirical orthogonal functions. Mon Wea Rev 110:699–706

    Article  Google Scholar 

  • North G, Moeng F, Bell T, Calahan R (1982b) The latitude dependence of the variance of zonally averaged quantities. Mon Wea Rev 110:319–326

    Article  Google Scholar 

  • de Pedraza LG (1985) La predicción del Tiempo en el Valle del Ebro. Technical Report Serie a. Technical report 38, INM

  • Powell M, Dodge P, Black M (1991) The landfall of hurricane hugo in the carolinas-surface wind distribution. Wea Forecast 6(3):379–399

    Article  Google Scholar 

  • Preisendorfer R (1988) Principal component analysis in meteorology and oceanography. Elsevier, Amsterdam

    Google Scholar 

  • Pryor S, Schoof J (2005) Empirical downscaling of wind speed probability distributions. J Geophys Res 110:D19,109

    Article  Google Scholar 

  • Pryor S, Barthelmie R, Kjellström E (2005a) Potencial climate change impact on wind energy resources in northern Europe: analyses using a regional climate model. Clim Dyn 25:815–835

    Article  Google Scholar 

  • Pryor S, Schoof J, Barthelmie RJ (2005b) Climate change impacts on wind speeds and wind energy density in northern Europe: empirical downscaling of multiple AOGCMs. Clim Res 29:183–198

    Article  Google Scholar 

  • Pryor S, Schoof J, Barthelmie R (2006) Winds of change? Projections of near-surface winds under climate change scenarios. Geophys Res Lett 33:L11,702. doi:10.1029/2006GL026,000

    Article  Google Scholar 

  • Pryor S, Barthelmie R, Tackle G (2009) Wind speed trends over the contiguos usa. IOP Conference Series: Earth Environ Sci 6. doi:10.1088/1755–1307/6/9/092,023

  • Raible C, Yoshimori M, Stocker T, Casty C (2007) Extreme midlatitude cyclones and their implications for precipitation and wind extremes in simulations of the Maunder Minimum versus present day conditions. Clim Dyn 28:409–423

    Article  Google Scholar 

  • de Rooy W, Kok K (2004) A combined physical-statistical approach for the downscaling of model wind speed. Weather Forecast 19:485–495

    Article  Google Scholar 

  • Schwierz C, Appenzeller C, Davies H, Liniger M, Muller W, Stocker T, Yoshimori M (2006) Challenges posed by and approaches to the study of seasonal-to-decadal climate variability. Clim Change 79

  • Seierstad IA, Stephenson D, Kvamstö N (2007) How useful are teleconnection patterns for explaining variability in extratropical storminess. Tellus 59:170–181

    Article  Google Scholar 

  • Simpson J (1994) Sea breezes and local winds. Cambridge University Press, Cambridge

    Google Scholar 

  • von Storch H (1995) Inconsistencies at the interface of climate impact studies and global climate research. Meteorol Zeitschrift 4:71–80

    Google Scholar 

  • von Storch H, Zwiers F (1999) Statistical analysis in climate research. Cambridge University Press, Cambridge

    Google Scholar 

  • von Storch H, Zorita E, Cubasch U (1993) Downscaling of global climate change estimates to regional scales: an application to Iberian rainfall in wintertime. J Clim 6:1161–1171

    Article  Google Scholar 

  • Taylor K (2001) Summarizing multiple aspects of model performance in single diagram. J Geophys Res 106:7183–7192

    Article  Google Scholar 

  • Trenberth K, Paolino D (1980) The northern hemisphere sea level pressure dataset: trends, errors and discontinuities. Mon Wea Rev 108:856–872

    Google Scholar 

  • Uppala S, Kallberg P, Simmons A, Andra U, daCosta Bechtold V, Fiorino M, Gibson J, Haseler J, Hernandez A, Kelly G, Li X, Onogi K, Saarinen S, Sokka N, Allan R, Andersson E, Arpe K, Balmaseda M, Beljaars A, van de Berg L, Bidlot J, Bormann N, Caires S, Chevallier F, Dethof A, Dragosavac M, Fisher M, Fuentes M, SHagemann EEH, Hoskins B, Isaksen L, Janssen P, Jenne R, McNally A, Mahfouf J, Morcrette J, Rayner N, Saunders R, Simon P, Sterl A, Trenberth K, A AU, Vasiljevic D, Viterbo P, Woollen J (2005) The era-40 re-analysis. Q J R Meteorol Soc 131:2961–3012

    Article  Google Scholar 

  • Weisse R, Feser F (2003) Evaluation of a method to reduce uncertainty in wind hindcasts performed with regional atmosphere models. Coast Eng 48:211–225

    Article  Google Scholar 

  • Xoplaki E, González-Rouco J, Gyalistras D, Luterbacher J, Rickli R, Wanner H (2003a) Interannual summer air temperature variability over Greece and its connection to the large-scale atmospheric circulation and Mediterranean SSTs 1950-1999. Clim Dyn 20:537–554

    Google Scholar 

  • Xoplaki E, González-Rouco J, Luterbacher J (2003b) Mediterranean summer air temperature variability and its connection to the large-scale atmospheric circulation and SSTs. Clim Dyn 20:723–739

    Google Scholar 

  • Xoplaki E, González-Rouco JF, Luterbacher J, Wanner H (2004) Wet season Mediterranean precipitation variability: influence of large-scale dynamics and predictability. Clim Dyn 23:63–78

    Article  Google Scholar 

  • Zhang D, Zheng W (2004) Diurnal cycles of surface winds and temperatures as simulated by five boundary layer parametrizations. J Appl Meteorol 43:157–169

    Article  Google Scholar 

  • Zhang N, Jiang W, Miao S (2006) A large eddy simulation on the effect of buildings on urban flows. Wind Struct 9(1):23–25

    Google Scholar 

  • Zorita E, von Storch H (1999) The analog method as a simple statistical downscaling technique: comparison with more complicated methods. J Clim 12:2474–2489

    Article  Google Scholar 

  • Zorita E, Viacheslav K, von Storch H (1992) The atmospheric circulation and sea surface temperature in the North Atlantic area in winter: their interaction and relevance for Iberian precipitation. J Clim 5:1097–1108

    Article  Google Scholar 

Download references

Acknowledgments

The authors are grateful for the interesting discussions and valuable comments to Dr. D. Bray, Dr. A. Gershunov, Dra. A. Hidalgo, Dr. J. Luterbacher, Dra. M. Montoya, Dr. C. Raible, Dr. P. D. Sardeshmukh, Dr. D. Stephenson, Dr. S. Wagner and Dr. E. Zorita. We acknowledge Dr. Luterbacher for providing the SLP reconstructions back to 1650 and the MedCLIVAR organization for providing the ESF grant that allowed for a stay at the University of Bern, Switzerland. We thank Acciona Energía for facilitating the wind farms dataset. We are also grateful to the ECMWF for providing the ERA-40 data and the outputs from the operational model used in this research. We acknowledge the working framework established by the collaboration between CIEMAT and the PalMA group at UCM (Ref. 09/153). Part of the financial support for some of the authors involved in this work was provided by the projects CGL2005-06966-C07/CLI, PSE-120000-2007-14 and CGL2008-05093/CLI. The authors wish to thank the two anonymous reviewers for their comments and suggestions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. García-Bustamante.

Rights and permissions

Reprints and permissions

About this article

Cite this article

García-Bustamante, E., González-Rouco, J.F., Navarro, J. et al. North Atlantic atmospheric circulation and surface wind in the Northeast of the Iberian Peninsula: uncertainty and long term downscaled variability. Clim Dyn 38, 141–160 (2012). https://doi.org/10.1007/s00382-010-0969-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00382-010-0969-x

Keywords

Navigation