Skip to main content
Log in

Non-invasive one-point carotid wave intensity in a large group of healthy subjects

A ventricular–arterial coupling parameter

  • Original Article
  • Published:
Heart and Vessels Aims and scope Submit manuscript

Abstract

The analysis of wave intensity (WI) evaluates the working condition of the heart interacting with the arterial system. WI in normal subjects has two peaks, the first (W 1) reflects left ventricle (LV) contractile performance, the second (W 2) is related to the ability of the LV to actively stop aortic blood flow. The aim of the study was to investigate the reference values of W 1 and W 2 in a group of apparently healthy subjects through a radiofrequency-based system. 680 subjects (388 men mean age 43.0 ± 17.4 years, range 16–92; 292 women mean age 44.8 ± 17.7 years, range 16–86) were enrolled and underwent physical examination, blood pressure (BP) and heart rate (HR) measurements and comprehensive transthoracic echocardiogram was performed. Measurement of local WI was obtained at the level of the left common carotid artery before the bifurcation, using a high definition echo-tracking system. W 1 was (12.37 ± 6.89) × 103 and (9.76 ± 4.8) × 103 mmHg m/s3, p < 0.0001; W 2 was (3.21 ± 1.81) × 103 and (2.98 ± 1.69) × 103 mmHg m/s3, p = ns in men and women, respectively. The cohort was divided into 5 age groups (ages 16–29; 30–39; 40–49; 50–59; >60) and stratified by gender. After adjustment for height, systolic BP and HR, W 1 decreased with age (p < 0.0001 in men and p = 0.026 in women for trend) while no relation was found for W 2. Multivariable regression analysis using age, gender, height, systolic BP, HR, ejection fraction and stroke volume indexed by body surface are predicted W 1 and age, systolic BP, HR and E/A as a measure of diastolic function, predicted W 2. Inter and intra-observer variability and feasibility of WI analysis were satisfactory. We reported the values and their clinical correlations of the two peaks (W 1 and W 2) of WI, a non-invasive hemodynamic index for assessing ventricular–arterial coupling in a large group of apparently healthy subjects.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Koh TW, Pepper JR, DeSouza AC, Parker KH (1998) Analysis of wave reflections in the arterial system using wave intensity: a novel method for predicting the timing and amplitude of reflected waves. Heart Vessels 13:103–113

    Article  CAS  PubMed  Google Scholar 

  2. Sugawara M, Uchida K, Kondoh Y, Magosaki N, Niki K, Jones CJ, Sugimachi M, Sunagawa K (1997) Aortic blood momentum—the more the better for the ejecting heart in vivo? Cardiovasc Res 33:433–446

    Article  CAS  PubMed  Google Scholar 

  3. Kass DA (2002) Age-related changes in ventricular-arterial coupling: pathophysiologic implications. Heart Fail Rev 7:51–62

    Article  PubMed  Google Scholar 

  4. Prabhu SD (2007) Altered left ventricular–arterial coupling precedes pump dysfunction in early heart failure. Heart Vessels 22:170–177

    Article  PubMed  Google Scholar 

  5. Sugawara M, Niki K, Ohte N, Okada T, Harada A (2009) Clinical usefulness of wave intensity analysis. Med Biol Eng Comput 47:197–206

    Article  PubMed  Google Scholar 

  6. Ohte N, Narita H, Akita S, Kurokawa K, Hayano J, Sugawara M, Kimura G (2002) The mechanism of emergence and clinical significance of apically directed intraventricular flow during isovolumetric relaxation. J Am Soc Echocardiogr 15:715–722

    Article  PubMed  Google Scholar 

  7. Antonini-Canterin F, Carerj S, Di Bello V, Di Salvo G, La Carrubba S, Vriz O, Pavan D, Balbarini A, Nicolosi GL (2009) Arterial stiffness and ventricular stiffness: a couple of diseases or a coupling disease? A review from the cardiologist’s point of view. Eur J Echocardiogr 10:36–43

    Article  PubMed  Google Scholar 

  8. Niki K, Sugawara M, Chang D, Harada A, Okada T, Sakai R, Uchida K, Tanaka R, Mumford CE (2002) A new noninvasive measurement system for wave intensity: evaluation of carotid arterial wave and reproducibility. Heart Vessels 17:12–21

    Article  PubMed  Google Scholar 

  9. Zhang Y, Liu M, Wang M, Zhang L, Lv Q, Xie M, Xiang F, Fu Q, Yin Y, Lu C, Yan T, Huang Y (2010) Wave intensity analysis of carotid artery: a noninvasive technique for assessing hemodynamic changes of hyperthyroid patients. J Huazhong Univ Sci Technolog Med Sci 30:672–677

    Article  PubMed  Google Scholar 

  10. Larsson M, Bja¨llmark A, Lind B, Balzano R, Peolsson M, Winter R, Brodin LA (2009) Wave intensity wall analysis: a novel noninvasive method to measure wave intensity. Heart Vessels 24:357–365

    Article  PubMed  Google Scholar 

  11. Bja¨llmark A, Larsson M, Nowak J, Lind B, Hayashi SY, do Nascimento MM, Riella MC, Seeberger A, Brodin LÅ (2011) Effects of hemodialysis on the cardiovascular system: quantitative analysis using wave intensity wall analysis and tissue velocity imaging. Heart Vessels 26:289–297

    Article  Google Scholar 

  12. Fujimoto S, Mizuno R, Saito Y, Nakamura S (2004) Clinical application of wave intensity for the treatment of essential hypertension. Heart Vessels 19:19–22

    Article  PubMed  Google Scholar 

  13. Takaya Y, Taniguchi M, Sugawara M, Nobusada S, Kusano K, Akagi T, Ito H (2013) Evaluation of exercise capacity using wave intensity in chronic heart failure with normal ejection fraction. Heart Vessels 28:179–187

    Article  PubMed  Google Scholar 

  14. Saba PS, Cameli M, Casalnuovo G, Ciccone MM, Ganau A, Maiello M, Modesti PA, Muiesan ML, Novo S, Palmiero P, Sanna GD, Schicchitano P, Pedrinelli R (2014)Ventricular-vascular coupling in hypertension: methodological considerations and clinical implications. J Cardiovasc Med (Hagerstown) Jul 4. (Epub ahead of print)

  15. Vriz O, Bossone E, Bettio M, Pavan D, Carerj S, Antonini-Canterin F (2011) Carotid artery stiffness and diastolic function in subjects without known cardiovascular disease. J Am Soc Echocardiogr 24:915–921

    Article  PubMed  Google Scholar 

  16. Mancia G, Fagard R, Narkiewicz K, Redon J, Zanchetti A, Böhm M, Christiaens T, Cifkova R, De Backer G, Dominiczak A, Galderisi M, Grobbee DE, Jaarsma T, Kirchhof P, Kjeldsen SE, Laurent S, Manolis AJ, Nilsson PM, Ruilope LM, Schmieder RE, Sirnes PA, Sleight P, Viigimaa M, Waeber B, Zannad F, Redon J, Dominiczak A, Narkiewicz K, Nilsson PM, Burnier M, Viigimaa M, Ambrosioni E, Caufield M, Coca A, Olsen MH, Schmieder RE, Tsioufis C, van de Borne P, Zamorano JL, Achenbach S, Baumgartner H, Bax JJ, Bueno H, Dean V, Deaton C, Erol C, Fagard R, Ferrari R, Hasdai D, Hoes AW, Kirchhof P, Knuuti J, Kolh P, Lancellotti P, Linhart A, Nihoyannopoulos P, Piepoli MF, Ponikowski P, Sirnes PA, Tamargo JL, Tendera M, Torbicki A, Wijns W, Windecker S, Clement DL, Coca A, Gillebert TC, Tendera M, Rosei EA, Ambrosioni E, Anker SD, Bauersachs J, Hitij JB, Caulfield M, De Buyzere M, De Geest S, Derumeaux GA, Erdine S, Farsang C, Funck-Brentano C, Gerc V, Germano G, Gielen S, Haller H, Hoes AW, Jordan J, Kahan T, Komajda M, Lovic D, Mahrholdt H, Olsen MH, Ostergren J, Parati G, Perk J, Polonia J, Popescu BA, Reiner Z, Rydén L, Sirenko Y, Stanton A, Struijker-Boudier H, Tsioufis C, van de Borne P, Vlachopoulos C, Volpe M, Wood DA (2013) ESH/ESC guidelines for the management of arterial hypertension: the Task Force for the Management of Arterial Hypertension of the European Society of Hypertension (ESH) and of the European Society of Cardiology (ESC). Eur Heart J 34:2159–2219

    Article  PubMed  Google Scholar 

  17. Lang RM, Bierig M, Devereux RB, Flachskampf FA, Foster E, Pellikka PA, Picard MH, Roman MJ, Seward J, Shanewise JS, Solomon SD, Spencer KT, Sutton MS, Stewart WJ (2005) Chamber quantification writing group; American Society of Echocardiography’s Guidelines and Standards Committee; European Association of Echocardiography. Recommendations for chamber quantification: a report from the American Society of Echocardiography’s Guidelines and Standards Committee and the Chamber Quantification Writing Group, developed in conjunction with the European Association of Echocardiography, a branch of the European Society of Cardiology. J Am Soc Echocardiogr 18:1440–1463

    Article  PubMed  Google Scholar 

  18. Devereux RB, Reichek N (1977) Echocardiographic determination of left ventricular mass in man. Anatomic validation of the method. Circulation 55:613–618

    Article  CAS  PubMed  Google Scholar 

  19. Dubin J, Wallerson DC, Cody RJ, Devereux RB (1990) Comparative accuracy of Doppler echocardiographic methods for clinical stroke volume determination. Am Heart J 120:116–123

    Article  CAS  PubMed  Google Scholar 

  20. Nishimura RA, Tajik AJ (1997) Evaluation of diastolic filling of left ventricle in health and disease: Doppler echocardiography is the clinician’s rosetta stone. J Am Coll Cardiol 30:8–18

    Article  CAS  PubMed  Google Scholar 

  21. Sohn DW, Chai IH, Lee DJ, Kim HC, Kim HS, Oh BH, Lee MM, Park YB, Choi YS, Seo JD, Lee YW (1997) Assessment of mitral annulus velocity by Doppler tissue imaging in the evaluation of left ventricular diastolic function. J Am Coll Cardiol 30:474–480

    Article  CAS  PubMed  Google Scholar 

  22. Nagueh SF, Appleton CP, Gillebert TC, Marino PN, Oh JK, Smiseth OA, Waggoner AD, Flachskampf FA, Pellikka PA, Evangelista A (2009) Recommendations for the evaluation of left ventricular diastolic function by echocardiography. J Am Soc Echocardiogr 22:107–133

    Article  PubMed  Google Scholar 

  23. Harada A, Okada T, Niki K, Chang D, Sugawara M (2002) On-line noninvasive one-point measurements of pulse wave velocity. Heart Vessels 17:61–68

    Article  PubMed  Google Scholar 

  24. Ramsey MW, Sugawara M (1997) Arterial wave intensity and ventriculoarterial interaction. Heart Vessels 12(suppl):128–134

    PubMed  Google Scholar 

  25. Niki K, Sugawara M, Uchida K, Tanaka R, Tanimoto K, Imamura H, Sakomura Y, Ishizuka N, Koyanagi H, Kasanuki H (1999) A noninvasive method of measuring wave intensity, a new hemodynamic index: application to carotid artery in patients with mitral regurgitation before and after surgery. Heart Vessels 14:263–271

    Article  CAS  PubMed  Google Scholar 

  26. Vriz O, Driussi C, La Carrubba S, Di Bello V, Zito C, Carerj S, Antonini-Canterin F (2013) Comparison of sequentially measured aloka echo-tracking one-point pulse wave velocity with SphygmoCor carotid–femoral pulse wave velocity. SAGE Open Medicine. doi:10.1177/2050312113507563

    PubMed  PubMed Central  Google Scholar 

  27. Zambanini A, Cunningham SL, Parker KH, Parker KH, Khir AW, McG Thom SA, Hughes AD (2005) Wave-energy patterns in carotid, brachial, and radial arteries: a noninvasive approach using wave-intensity analysis. Am J Physiol Heart Circ Physiol 289:H270–H276

    Article  CAS  PubMed  Google Scholar 

  28. Khir AW, Parker KH (2005) Wave intensity in the ascending aorta: effects of arterial occlusion. J Biomech 38:647–655

    Article  CAS  PubMed  Google Scholar 

  29. Parker KH, Jones CJH, Dawson JR, Gibson DG (1988) What stops the flow of blood from the heart? Heart Vessels 4:241–245

    Article  CAS  PubMed  Google Scholar 

  30. Parker KH, Jones CJH (1990) Forward and backward running waves in the arteries: analysis using the method of characteristics. ASME J Biomech Eng 113:322–326

    Article  Google Scholar 

  31. Sugawara M, Senda S, Katayama H, Masugata H, Nishiya T, Matsuo H (1994) Noninvasive estimation of left ventricular Max(dP/dt) from aortic flow acceleration and pulse wave velocity. Echocardiography 11:377–384

    Article  CAS  PubMed  Google Scholar 

  32. MacRae JM, Sun YH, Isaac DL, Dobson GM, Cheng CP, Little WC, Parker KH, Tyberg JV (1997) Wave-intensity analysis: a new approach of left ventricular filling dynamics. Heart Vessels 12:53–59

    Article  CAS  PubMed  Google Scholar 

  33. Jones CJH, Sugawara M, Kondoh Y, Uchida K, Parker KH (2002) Compression and expansion wavefront travel in canine ascending aortic flow: wave intensity analysis. Heart Vessels 16:91–98

    Article  PubMed  Google Scholar 

  34. Ohte N, Narita H, Sugawara M, Niki K, Okada T, Harada A, Hayano J, Kimura G (2003) Clinical usefulness of carotid arterial wave intensity in assessing left ventricular systolic and early diastolic performance. Heart Vessels 18:107–111

    Article  PubMed  Google Scholar 

  35. Li Y, Guo L (2013) Clinical value of carotid wave intensity analysis for differentiating nonobstructive hypertrophic cardiomyopathy from left ventricular hypertrophy secondary to systemic hypertension. J Clin Ultrasound 41:151–157

    Article  PubMed  Google Scholar 

  36. Yan H, Fahs CA, Ranadive S, Rossow LM, Lane AD, Agiovlasitis S, Echols G, Smith D, Horn GP, Rowland T, Fernhall B (2012) Evaluation of carotid wave intensity in firefighters following firefighting. Eur J Appl Physiol 112:2385–2391

    Article  PubMed  Google Scholar 

  37. Magda SL, Ciobanu AO, Florescu M, Vinereanu D (2013) Comparative reproducibility of the noninvasive ultrasound methods for the assessment of vascular function. Heart Vessels 28:143–150

    Article  PubMed  Google Scholar 

  38. Borlotti A, Khir AW, Rietzschel ER, De Buyzere ML, Vermeersch S, Segers P (2012) Noninvasive determination of local pulse wave velocity and wave intensity: changes with age and gender in the carotid and femoral arteries of healthy human. J Appl Physiol 113(5):727–735

    Article  PubMed  Google Scholar 

  39. Oishi Y, Miyoshi H, Iuchi A, Nagase N, Ara N, Oki T (2013) Vascular aging of common carotid artery and abdominal aorta in clinically normal individuals and preclinical patients with cardiovascular risk factors: diagnostic value of two-dimensional speckle-tracking echocardiography. Heart Vessels 28:222–228

    Article  PubMed  Google Scholar 

  40. Lee HY, Oh BH (2010) Aging and arterial stiffness. Circ J 74:2257–2262

    Article  PubMed  Google Scholar 

  41. Vermeersch SJ, Rietzschel ER, De Buyzere ML, De Bacquer D, De Backer G, Van Bortel LM, Gillebert TC, Verdonck PR, Segers P (2008) Age and gender related patterns in carotid-femoral PWV and carotid and femoral stiffness in a large healthy, middle-aged population. J Hypertens 26:1411–1419

    Article  CAS  PubMed  Google Scholar 

  42. Wongphen A, Boonyasirinant T (2013) The correlation between aortic stiffness and left ventricular mass index in hypertensive patients: a cardiac MRI study. J Med Assoc Thai 96(Suppl 2):S171–S177

    PubMed  Google Scholar 

  43. Safar M (1990) Ageing and its effects on the cardiovascular system. Drugs 39:1–8

    Article  PubMed  Google Scholar 

  44. Fukuhara M, Matsumura K, Ansai T, Takata Y, Sonoki K, Akifusa S, Wakisaka M, Hamasaki T, Fujisawa K, Yoshida A, Fujii K, Iida M, Takehara T (2006) Prediction of cognitive function by arterial stiffness in the very elderly. Circ J 70:756–761

    Article  PubMed  Google Scholar 

  45. Chrysohoou C, Skoumas J, Oikonomou E, Tsiachris D, Metaxa V, Lagoudakou S, Felekos J, Masoura C, Athanassopoulou S, Kosyfa H, Pitsavos C, Stefanadis C (2013) Aortic artery distensibility shows inverse correlation with heart rate variability in elderly non-hypertensive, cardiovascular disease-free individuals: the Ikaria study. Heart Vessels 28:467–472

    Article  PubMed  Google Scholar 

  46. Mitchell GF, Parise H, Benjamin EJ, Larson MG, Keyes MJ, Vita JA, Vasan RS, Levy D (2004) Changes in arterial stiffness and wave reflection with advancing age in healthy men and women: the Framingham heart study. Hypertension 43:1239–1245

    Article  CAS  PubMed  Google Scholar 

  47. Lumens J, Delhaas T, Arts T, Cowan BR, Young AA (2006) Impaired subendocardial contractile myofiber function in asymptomatic aged humans, as detected using MRI. Am J Physiol Heart Circ Physiol 291:H1573–H1579

    Article  CAS  PubMed  Google Scholar 

  48. Cain PA, Ahl R, Hedstrom E, Ugander M, Allansdotter-Johnsson A, Friberg P, Arheden H (2009) Age and gender specific normal values of left ventricular mass, volume and function for gradient echo magnetic resonance imaging: a cross sectional study. BMC Med Imaging 9:2. doi:10.1186/1471-2342-9-2

    Article  PubMed  PubMed Central  Google Scholar 

  49. Liu J, Cao TS, Duan YY, Yang YL, Yuan IJ (2011) Effects of cold pressor-induced sympathetic stimulation on the mechanical properties of common carotid and femoral arteries in healthy males. Heart Vessels 26:214–221

    Article  CAS  PubMed  Google Scholar 

  50. Hollingsworth KG, Blamire AM, Keavney BD, Macgowan GA (2012) Left ventricular torsion, energetics, and diastolic function in normal human aging. Am J Physiol Heart Circ Physiol 302(4):H885–H892

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Slotwiner DJ, Devereux RB, Schwartz JE, Pickering TG, de Simone G, Ganau A, Saba PS, Roman MJ (1998) Relation of age to left ventricular function in clinically normal adults. Am J Cardiol 82:621–626

    Article  CAS  PubMed  Google Scholar 

  52. Zito C, Mohammed M, Todaro MC, Khandheria BK, Cusmà-Piccione M, Oreto G, Pugliatti P, Abusalima M, Antonini-Canterin F, Vriz O, Carerj S (2014) Interplay between arterial stiffness and diastolic function: a marker of ventricular-vascular coupling. J Cardiovasc Med 15:788–796

    Article  Google Scholar 

Download references

Acknowledgement

The authors acknowledge Martina Arteni for helping in editing the manuscript.

Conflict of interest

The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Olga Vriz.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vriz, O., Zito, C., di Bello, V. et al. Non-invasive one-point carotid wave intensity in a large group of healthy subjects. Heart Vessels 31, 360–369 (2016). https://doi.org/10.1007/s00380-014-0600-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00380-014-0600-x

Keywords

Navigation