Skip to main content
Log in

The application of flux-form semi-Lagrangian transport scheme in a spectral atmosphere model

  • Published:
Advances in Atmospheric Sciences Aims and scope Submit manuscript

Abstract

A flux-form semi-Lagrangian transport scheme (FFSL) was implemented in a spectral atmospheric GCM developed and used at IAP/LASG. Idealized numerical experiments show that the scheme is good at shape preserving with less dissipation and dispersion, in comparison with other conventional schemes. Importantly, FFSL can automatically maintain the positive definition of the transported tracers, which was an underlying problem in the previous spectral composite method (SCM). To comprehensively investigate the impact of FFSL on GCM results, we conducted sensitive experiments. Three main improvements resulted: first, rainfall simulation in both distribution and intensity was notably improved, which led to an improvement in precipitation frequency. Second, the dry bias in the lower troposphere was significantly reduced compared with SCM simulations. Third, according to the Taylor diagram, the FFSL scheme yields simulations that are superior to those using the SCM: a higher correlation between model output and observation data was achieved with the FFSL scheme, especially for humidity in lower troposphere. However, the moist bias in the middle and upper troposphere was more pronounced with the FFSL scheme. This bias led to an over-simulation of precipitable water in comparison with reanalysis data. Possible explanations, as well as solutions, are discussed herein.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Adler, R., and Coauthors, 2003: The Version-2 Global Precipitation Climatology Project (GPCP) monthly precipitation analysis (1979-present). J. Hydrometeor., 4, 1147–1167.

    Article  Google Scholar 

  • Bao, Q., Y. Liu, T. Zhou, Z. Wang, G. Wu, and P. Wang, 2006: The sensitivity of the spectral atmospheric general circulation model of LASG/IAP to the land process. Chinese J. Atmos. Sci., 30, 1077–1090. (in Chinese)

    Google Scholar 

  • Bao, Q., G. Wu, Y. Liu, J. Yang, Z. Wang, and T. Zhou, 2010: An introduction to the coupled model FGOALS1.1-s and its performance in East Asia. Adv. Atmos. Sci., 27(5), 1131–1142, doi: 10.1007/s00376-010-9177-1.

    Article  Google Scholar 

  • Colella, P., and P. Woodward, 1984: The piecewise parabolic method (PPM) for gas-dynamical simulations. J. Comput. Phys., 54, 174–201.

    Article  Google Scholar 

  • Edwards, J., and A. Slingo, 1996: Studies with a flexible new radiation code. I: Choosing a configuration for a large-scale model. Quart. J. Roy. Meteor. Soc., 122, 689–720.

    Article  Google Scholar 

  • Holtslag, A., and B. Boville, 1993: Local versus nonlocal boundary-layer diffusion in a global climate model. J. Climate, 6, 1825–1842.

    Article  Google Scholar 

  • Kalnay, E, and Coauthors, 1996: The NCEP/ NCAR 40-year reanalysis project. Bull. Amer. Meteor. Soc., 77, 437–471.

    Article  Google Scholar 

  • Lin, S., 2004: A “vertically-Lagrangian” finite-volume dynamical core for global atmospheric models. Mon. Wea. Rev., 132, 2293–2307.

    Article  Google Scholar 

  • Lin, S., and R. Rood, 1996: Multidimensional flux-form semi-Lagrangian transport scheme. Mon. Wea. Rev., 124, 2046–2070.

    Article  Google Scholar 

  • Liu, P., B. Wang, R. K. Sperber, T. Li, and G. A. Meehl, 2005: MJO in the NCAR CAM2 with the Tiedtke Convective Scheme. J. Climate, 18, 3007–3020.

    Article  Google Scholar 

  • Lohmann, U., and E. Roeckner, 1996: Design and performance of a new cloud microphysics scheme developed for the ECHAM general circulation model. Climate Dyn., 12, 557–572.

    Article  Google Scholar 

  • Manabe, S., J. Smagorinsky, and R. Strickler, 1965: Simulated climatology of a general circulation model with a hydrologic cycle. Mon. Wea. Rev., 93, 769–798.

    Article  Google Scholar 

  • McDonald, A., 1984: Accuracy of multiply-upstream, semi-Lagrangian advection schemes. Mon. Wea. Rev., 112, 1267–1275.

    Article  Google Scholar 

  • McDonald, A., 1987: Accuracy of multiply-upstream, semi-Lagrangian advection schemes II. Mon. Wea. Rev., 115, 1446–1450.

    Article  Google Scholar 

  • Nielsen, W. A., 1959: On the application of trajectory methods in numerical forecasting. Tellus, 11, 180–196.

    Article  Google Scholar 

  • Nordeng, T.-E., 1994: Extended versions of the convective parameterization scheme at ECMWF and their impact on the mean and transient activity of the model in the tropics. Technical Memorandum, No. 206, ECMWF, Shinfield Park, Reading RG 29AX, U.K., 44pp.

    Google Scholar 

  • Peng, X., F. Xiao, W. Ohfuchi, and H. Fuchigami, 2005: Conservative semi-Lagrangian transport on a sphere and the impact on vapor advection in an atmospheric general circulation model. Mon. Wea. Rev., 133(3), 504–520.

    Article  Google Scholar 

  • Ritchie, H., 1985: Application of a semi-Lagrangian integration scheme to the moisture equation in a regional forecast model. Mon. Wea. Rev., 113, 424–435.

    Article  Google Scholar 

  • Ritchie, H., 1987: Semi-Lagrangian advection on a Gaussian grid. Mon. Wea. Rev., 115, 608–619.

    Article  Google Scholar 

  • Robert, A., 1981: A stable numerical integration scheme for the primitive meteorological equation. Atmos.-Ocean, 19, 35–46.

    Article  Google Scholar 

  • Robert, A., 1982: Semi-Lagrangian and semi-implicit numerical integration scheme for the primitive meteorological equation. Quart. J. Roy. Meteor. Soc., 60, 319–324.

    Google Scholar 

  • Roeckner, E., and Coauthors, 2003: The atmospheric general circulation model ECHAM5. Part I: Model description. Tech. Rep., Max-Planck-Institute, Hamburg, Germany, 127pp.

    Google Scholar 

  • Rood, R., 1987: Numerical advection algorithms and their role in atmospheric transport and chemistry models. Rev. Geophys., 25, 71–100.

    Article  Google Scholar 

  • Slingo, J., 1980: A cloud parameterization scheme derived from GATE data for use with a numerical model. Quart. J. Roy. Meteor. Soc., 106, 747–770.

    Article  Google Scholar 

  • Smolarkiewicz, P. K., and W. W. Grabowski, 1990: The multidimensional positive definite advection transport algorithm: Non-oscillatory option. J. Comput. Phys., 86, 355–375.

    Article  Google Scholar 

  • Song, X., 2005: The evaluation analysis of two kinds of mass flux cumulus parameterizations in climate simulation. Ph. D. dissertation, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing, 156pp. (in Chinese)

    Google Scholar 

  • Staniforth, A., and J. Côté, 1991: Semi-Lagrangian integration schemes for atmospheric models-A review. Mon. Wea. Rev., 119, 2206–2223.

    Article  Google Scholar 

  • Sun, Z., 2005: Parameterizations of radiation and cloud optical properties. BMRC Research Report, 107–112.

  • Taylor, K., 2001: Summarizing multiple aspect s of model performance in a single diagram. J. Geophys. Res., 106, 7183–7192.

    Article  Google Scholar 

  • Tiedtke, M., 1989: A comprehensive mass flux scheme for cumulus parameterization in large-scale models. Mon. Wea. Rev., 117, 1779–1800.

    Article  Google Scholar 

  • Uppala, S., and Coauthors, 2005: The ERA-40 reanalysis. Quart. J. Roy. Meteor. Soc., 131, 2961–3012.

    Article  Google Scholar 

  • van Leer, B., 1977: Toward the ultimate conservative difference scheme. Part IV: A new approach to numerical convection. J. Comput. Phys., 23, 276–299.

    Article  Google Scholar 

  • van Leer, B., 1979: Toward the ultimate conservative difference scheme. Part V: A second order sequel to Godunov’s method. J. Comput. Phys., 32, 101–136.

    Article  Google Scholar 

  • Wang, X., Q. Bao, K. Liu, G. Wu, and Y. Liu, 2011: Features of rainfall and latent heating structure simulated by two convective parameterization schemes. Science in China (D), 54, 1779–1788.

    Article  Google Scholar 

  • Wang, Z., and Coauthors, 2005a: The development of GOALS/LASGAGCM and its global climatological features in climate simulation I: Influence of horizontal resolution. Journal of Tropical Meteorology, 21, 225–237. (in Chinese)

    Google Scholar 

  • Wang, Z., and Coauthors, 2005b: The development of GOALS/LASG AGCM and its global climatological features in climate simulation. II: The increase of vertical resolution and its influences. Journal of Tropical Meteorology, 21, 238–247. (in Chinese)

    Google Scholar 

  • Williamson, D., J. Drake, J. Hack, R. Jackob, and P. Swarztrauber, 1992: A standard test for numerical approximations to the shallow water equations in spherical geometry. J. Comput. Phys., 102, 211–224.

    Article  Google Scholar 

  • Wu, G., H. Liu, Y. Zhao, and W. Li, 1996: A nine-layer atmospheric general circulation model and its performance. Adv. Atmos. Sci., 13(1), 1–18.

    Article  Google Scholar 

  • Wu, T., Z. Wang, Y. Liu, R. Yu, and G. Wu, 2004: An evaluation of the effects of cloud parameterization in the R42L9 GCM. Adv. Atmos. Sci., 21, 153–162.

    Article  Google Scholar 

  • Xiao, F., and X. Peng, 2004: A convexity preserving scheme for conservative advection transport. J. Comput. Phys., 198, 389–402.

    Article  Google Scholar 

  • Xiao, F., T. Yabe, X. Peng, and H. Kobayashi, 2002: Conservative and oscillation-less atmospheric transport schemes based on rational functions. J. Geophys. Res., 107, 4609, doi: 10.1029/2001JD001532.

    Article  Google Scholar 

  • Yu, R., 1994: A two-step shape-preserving advection scheme. Adv. Atmos. Sci., 11, 79–90.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yimin Liu  (刘屹岷).

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wang, X., Liu, Y., Wu, G. et al. The application of flux-form semi-Lagrangian transport scheme in a spectral atmosphere model. Adv. Atmos. Sci. 30, 89–100 (2013). https://doi.org/10.1007/s00376-012-2039-2

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00376-012-2039-2

Key words

Navigation