Skip to main content
Log in

Variational assimilation of satellite cloud water/ice path and microphysics scheme sensitivity to the assimilation of a rainfall case

  • Published:
Advances in Atmospheric Sciences Aims and scope Submit manuscript

Abstract

Hydrometeor variables (cloud water and cloud ice mixing ratios) are added into the WRF three-dimensional variational assimilation system as additional control variables to directly analyze hydrometeors by assimilating cloud observations. In addition, the background error covariance matrix of hydrometeors is modeled through a control variable transform, and its characteristics discussed in detail. A suite of experiments using four microphysics schemes (LIN, SBU-YLIN, WDM6 and WSM6) are performed with and without assimilating satellite cloud liquid/ice water path. We find analysis of hydrometeors with cloud assimilation to be significantly improved, and the increment and distribution of hydrometeors are consistent with the characteristics of background error covariance. Diagnostic results suggest that the forecast with cloud assimilation represents a significant improvement, especially the ability to forecast precipitation in the first seven hours. It is also found that the largest improvement occurs in the experiment using the WDM6 scheme, since the assimilated cloud information can sustain for longer in this scheme. The least improvement, meanwhile, appears in the experiment using the SBU-YLIN scheme.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Albers, S. C., J. A. McGinley, D. L. Birkenheuer, and J. R. Smart, 1997: The local analysis and prediction system (LAPS): Analyses of clouds, precipitation, and temperature. Wea. Forecasting, 11, 273–287.

    Article  Google Scholar 

  • Auligné, T., A. Lorenc, Y. Michel, T. Montmerle, A. Jones, M. Hu, and J. Dudhia, 2011: Toward a new cloud analysis and prediction system. Bull. Amer. Meteor. Soc., 92, 207–210.

    Article  Google Scholar 

  • Barker, D., and Coauthors, 2012: The weather research and forecasting model’s community variational/ensemble data assimilation system: WRFDA. Bull. Amer. Meteor. Soc., 93, 831–843.

    Article  Google Scholar 

  • Bauer, P., and Coauthors, 2011: Satellite cloud and precipitation assimilation at operational NWP centres. Quart. J. Roy. Meteor. Soc., 137, 1934–1951.

    Article  Google Scholar 

  • Benjamin, S. G., and Coauthors, 2004: An hourly assimilationforecast cycle: The RUC. Mon. Wea. Rev., 132, 495–518.

    Article  Google Scholar 

  • Bukovsky, M. S., and D. J. Karoly, 2009: Precipitation simulations using WRF as a nested regional climate model. J. Appl. Meteor. Climatol., 48, 2152–2159.

    Article  Google Scholar 

  • Chen, Y. D., S. R. H. Rizvi, X.-Y. Huang, J. Z. Min, and X. Zhang, 2013: Balance characteristics of multivariate background error covariances and their impact on analyses and forecasts in tropical and arctic regions. Meteor. Atmos. Phys., 121, 79–98, doi: 10.1007/s00703-013-0251-y.

    Article  Google Scholar 

  • Chen, Y. D., H. L. Wang, J. Z. Min, X. Y. Huang, P. Minnis, R. Z. Zhang, J. Haggerty, and R. Palikonda, 2015: Variational assimilation of cloud liquid/ice water path and its impact on NWP. J. Appl. Meteor. Climatol., 54, 1809–1825.

    Article  Google Scholar 

  • Desroziers, G., L. Berre, B. Chapnik, and P. Poli, 2005: Diagnosis of observation, background and analysis-error statistics in observation space. Quart. J. Roy. Meteor. Soc., 131, 3385–3396.

    Article  Google Scholar 

  • Errico, R. M., P. Bauer, and J. F. Mahfouf, 2007: Issues regarding the assimilation of cloud and precipitation data. J. Atmos. Sci., 64, 3785–3798.

    Article  Google Scholar 

  • Hong, S.-Y., J.-H. Kim, J.-O. Lim, and J. Dudhia, 2006: The WRF single moment microphysics scheme (WSM). J. Korean Meteor. Soc., 2006, 42, 129–151.

    Google Scholar 

  • Hu, M., M. Xue, and K. Brewster, 2006a: 3DVAR and cloud analysis with WSR-88D level-II data for the prediction of the Fort Worth, Texas, tornadic thunderstorms. Part I: Cloud analysis and its impact. Mon. Wea. Rev., 134, 675–698.

    Article  Google Scholar 

  • Hu, M., M. Xue, J. D. Gao, and K. Brewster, 2006b: 3DVAR and cloud analysis with WSR-88D level-II data for the prediction of the Fort Worth, Texas, tornadic thunderstorms. Part II: Impact of radial velocity analysis via 3DVAR. Mon. Wea. Rev., 134, 699–721.

    Article  Google Scholar 

  • Jones, T. A., D. J. Stensrud, P. Minnis, and R. Palikonda, 2003: Evaluation of a forward operator to assimilate cloud water path into WRF-DART. Mon. Wea. Rev., 141, 2272–2289.

    Article  Google Scholar 

  • Lim, K. S. S., and S. Y. Hong, 2010: Development of an effective double-moment cloud microphysics scheme with prognostic cloud condensation nuclei (CCN) for weather and climate models. Mon. Wea. Rev., 138, 1587–1612.

    Article  Google Scholar 

  • Lin, Y. L., R. D. Farley, and H. D. Orville, 1983: Bulk Parameterization of the snow field in a cloud model. J. Appl. Meteor., 22, 1065–1092.

    Article  Google Scholar 

  • Lin, Y. L., and B. A. Colle, 2011: A new bulk microphysical scheme that includes riming intensity and temperaturedependent ice characteristics. Mon. Wea. Rev., 139, 1013–1035.

    Article  Google Scholar 

  • McNally, A. P., 2009: The direct assimilation of cloud-affected satellite infrared radiances in the ECMWF 4D-Var. Quart. J. Roy. Meteor. Soc., 135, 1214–1229.

    Article  Google Scholar 

  • Migliorini, S., 2012: On the equivalence between radiance and retrieval assimilation. Mon. Wea. Rev., 140, 258–265.

    Article  Google Scholar 

  • Minnis, P., 2007: Cloud retrievals from GOES-R. Proc. OSA Hyperspec. Imaging Sounding of Environ. Topical Mtg., Santa Fe, NM, Feb. 11–15, CD-ROM, HWC3m.

    Google Scholar 

  • Minnis, P., and Coauthors, 2008: Near-real time cloud retrievals from operational and research meteorological satellites. Proc. SPIE Europe Remote Sens., Cardiff, Wales, UK,15–18 September, 7107, No. 2, 8 pp.

    Google Scholar 

  • Minnis, P., and Coauthors, 2011: CERES edition-2 cloud property retrievals using TRMM VIRS and terra and aqua MODIS Data—Part I: Algorithms. IEEE Trans. Geosci. Remote Sens., 49, 4374–4400.

    Article  Google Scholar 

  • Minnis, P., and Coauthors, 2012: Simulations of infrared radiances over a deep convective cloud system observed during TC4: Potential for enhancing nocturnal ice cloud retrievals. Remote Sensing, 4, 3022–3054.

    Article  Google Scholar 

  • Okamoto, K., A. P. McNally, and W. Bell, 2014: Progress towards the assimilation of all-sky infrared radiances: An evaluation of cloud effects. Quart. J. Roy. Meteor. Soc., 140, 1603–1614.

    Article  Google Scholar 

  • Parrish, D. F., and J. C. Derber, 1992: The national meteorological center’s spectral statistical-interpolation analysis system. Mon. Wea. Rev., 120, 1747–1763.

    Article  Google Scholar 

  • Pincus, R., R. J. Patrick Hofmann, J. L. Anderson, K. Raeder, N. Collins, and J. S. Whitaker, 2011: Can fully accounting for clouds in data assimilation improve short-term forecasts by global models? Mon. Wea. Rev., 139, 946–957.

    Article  Google Scholar 

  • Polkinghorne, R., and T. Vukicevic, 2011: Data assimilation of cloud-affected radiances in a cloud-resolving model. Mon. Wea. Rev., 139, 755–773.

    Article  Google Scholar 

  • Rama Y. V., H. R. Hatwar, A. Kamal Salah, and Y. Sudhakar, 2007: An experiment using the high resolution eta and WRF models to forecast heavy precipitation over India. Pure Appl. Geophys., 164, 1593–1615.

    Article  Google Scholar 

  • Roberts, N. M., and H. W. Lean, 2008: Scale-selective verification of rainfall accumulations from high-resolution forecasts of convective events. Mon. Wea. Rev., 136, 78–97.

    Article  Google Scholar 

  • Shen, Y., P. Zhao, Y. Pan, and J. J. Yu, 2014: A high spatiotemporal gauge-satellite merged precipitation analysis over China. J. Geophys. Res.: Atmos., 119, 3063–3075.

    Google Scholar 

  • Sun, J. Z., and N. A. Crook, 2010: Dynamical and microphysical retrieval from Doppler radar observations using a cloud model and its adjoint. Part I: Model development and simulated data experiments. J. Atmos. Sci., 54, 1642–1661.

    Article  Google Scholar 

  • Sun, J. Z., and H. L. Wang, 2013: WRF-ARW variational stormscale data assimilation: Current capabilities and future developments. Advances in Meteorology, 2013, 815910.

    Article  Google Scholar 

  • Wang, H. L., J. Z. Sun, X. Zhang, X.-Y. Huang, and T. Auligné, 2013: Radar data assimilation with WRF 4D-Var. Part I: System development and preliminary testing. Mon. Wea. Rev., 141, 2224–2244.

    Google Scholar 

  • Zhu, T., and D. L. Zhang, 2006: Numerical simulation of hurricane bonnie (1998). Part II: Sensitivity to varying cloud microphysical processes. J. Atmos. Sci., 63, 109–126.

    Google Scholar 

  • Zhu, T., D. L. Zhang and F. Z. Weng, 2004: Numerical simulation of Hurricane Bonnie (1998). Part I: Eyewall evolution and intensity changes. Mon. Wea. Rev., 132, 225–241.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yaodeng Chen.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, Y., Zhang, R., Meng, D. et al. Variational assimilation of satellite cloud water/ice path and microphysics scheme sensitivity to the assimilation of a rainfall case. Adv. Atmos. Sci. 33, 1158–1170 (2016). https://doi.org/10.1007/s00376-016-6004-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00376-016-6004-3

Keywords

Navigation