Skip to main content

Advertisement

Log in

FORSETI: a visual analysis environment for authoring autopsy reports in extended legal medicine mark-up language

  • Original article
  • Published:
The Visual Computer Aims and scope Submit manuscript

Abstract

In forensic autopsy, medical examiners (MEs) and diagnostic radiologists (DRs) cooperate with each other to perform an autopsy of the corpse. Effective computational assistance tools are imperative for facilitating the intricate collaborative work involved in the autopsy. In this paper, we present an integrated visual analysis environment named FORSETI (forensic autopsy system for e-court instruments), whose technical essence is twofold. The first is to be designed on the basis of an extended version of legal medicine mark-up language for authoring reports on physical autopsy (PA) as well as on virtual autopsy (VA). The second lies in autopsy juxtaposition, which seamlessly assists the MEs and DRs in referring to the VA and PA works, respectively. A fictitious case with the Visible Female Dataset is used to demonstrate the effectiveness of an initial prototype of the FORSETI system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Notes

  1. Forseti is the name of the god of justice and reconciliation in Norse mythology. [3].

References

  1. Levy, A.D., Harcke, H.T.: Essentials of Forensic Imaging: A Text-Atlas. CRC Press, Boca Raton (2010)

    Book  Google Scholar 

  2. Boussejra, M.O., Adachi, N., Shojo, H., Takahashi, R., Fujishiro, I.: LMML: Initial developments of an integrated environment for forensic data visualization. In: Proceedings of EuroVis 2016 Short Papers, 31–35 (2016)

  3. Lindow, J.: Norse Mythology: A Guide to Gods, Heroes, Rituals, and Beliefs. Oxford University Press, Oxford (2002)

    Google Scholar 

  4. Thali, M.J., Yen, K., Schweitzer, W., Vock, P., Boesch, C., Ozdoba, C., Schroth, G., Ith, M., Sonnenschein, M., Doernhoefer, T.: Virtopsy, a new imaging horizon in forensic pathology: virtual autopsy by postmortem multislice computed tomography (MSCT) and magnetic resonance imaging (MRI)-A feasibility study. J. Forens. Sci. 48(2), 386–403 (2003)

    Article  Google Scholar 

  5. Langer, R., Tröhler, A., Schnüriger, B., Trippel, M., Blank, A., Banz, Y., Candinas, D., Perren, A., Lugli, A.: Implementation of modern tools in autopsy practice-the way towards contemporary postmortal diagnostics. Virchows Archiv. 474(2), 149–158 (2019)

    Article  Google Scholar 

  6. Underwood, J.: Post-mortem imaging and autopsy: Rivals or allies? Lancet 379(9811), 100–102 (2012)

    Article  Google Scholar 

  7. Benali, L., Gromb, S., Bou, C.: Post-mortem imaging in traffic fatalities: from autopsy to reconstruction of the scene using freely available software. Int. J. Legal Med. 127(5), 1045–1049 (2013)

    Article  Google Scholar 

  8. Bolliger, S., Thali, M.J., Ross, S., Buck, U., Naether, S., Vock, P.: Virtual autopsy using imaging: Bridging radiologic and forensic sciences. A review of the Virtopsy and similar projects. Eur. Radiol. 18(2), 273–282 (2018)

    Article  Google Scholar 

  9. Urschler, M., Bornik, A., Scheurer, E., Yen, K., Bischof, H., Schmalstieg, D.: Forensic-case analysis: from 3D imaging to interactive visualization. IEEE Comput. Graph. Appl. 32(4), 79–87 (2012)

    Article  Google Scholar 

  10. Roberts, I., Benamore, R.E., Benbow, E.W., Lee, S.H., Harris, J.N., Jackson, A., Mallett, S., Patankar, T., Peebles, C., Roobottom, C.: Post-mortem imaging as an alternative to autopsy in the diagnosis of adult deaths: a validation study. Lancet 379(9811), 136–142 (2012)

    Article  Google Scholar 

  11. Ljung, P., Winskog, C., Persson, A., Lundström, C., Ynnerman, A.: Full body virtual autopsies using a state-of-the-art volume rendering pipeline. IEEE Trans. Visual. Comput. Graph. 12(5), 869–876 (2006)

    Article  Google Scholar 

  12. Lundström, C., Rydell, T., Forsell, C., Persson, A., Ynnerman, A.: Multi-touch table system for medical visualization: application to orthopedic surgery planning. IEEE Trans. Visual. Comput. Graph. 17(12), 1775–1784 (2011)

    Article  Google Scholar 

  13. Scandurra, I., Forsell, C., Ynnerman, A., Ljung, P., Lundström, C., Persson, A.: Advancing the state-of-the-art for Virtual Autopsies-Initial forensic workflow study. Stud. Health Technol. Inform. 160(1), 639–643 (2010)

    Google Scholar 

  14. Lundström, C., Persson, A., Ross, S., Ljung, P., Lindholm, S., Gyllensvärd, F., Ynnerman, A.: State-of-the-art of visualization in post-mortem imaging. Apmis 120(4), 316–326 (2012)

    Article  Google Scholar 

  15. Ynnerman, A., Rydell, T., Persson, A., Ernvik, A., Forsell, C., Ljung, P., Lundström, C.: Multi-touch table system for medical visualization. Eurographics (Dirk Bartz Prize) 9–12,(2015)

  16. Ynnerman, A., Rydell, T., Antoine, D., Hughes, D., Persson, A., Ljung, P.: Interactive visualization of 3D scanned mummies at public venues. Commun. ACM 59(12), 72–81 (2016)

    Article  Google Scholar 

  17. Zabusky, N.J., Silver, D., Pelz, R.: Vizgroup’93: Visiometrics, juxtaposition and modeling. Phys. Today 46(3), 24–31 (1993)

    Article  Google Scholar 

  18. Bichlmeier, C., Wimmer, F., Heining, S.M., Navab, N.: Contextual anatomic mimesis hybrid in-situ visualization method for improving multi-sensory depth perception in medical augmented reality. In: Proceedings of 6th IEEE and ACM International Symposium on Mixed and Augmented Reality, pp. 129–138 (2007)

  19. Macedo, M.C., Apolinário, A.L., Souza, A.C., Giraldi, G.A.: A semi-automatic markerless augmented reality approach for on-patient volumetric medical data visualization. In: Proceedings of XVI Symposium on Virtual and Augmented Reality, pp. 63–70 (2014)

  20. Tatzgern, M., Kalkofen, D., Grasset, R., Schmalstieg, D.: Hedgehog labeling: view management techniques for external labels in 3D space. In: Proceedings of IEEE Virtual Reality, pp. 27–32 (2014)

  21. Jiang, Z., Nimura, Y., Hayashi, Y., Kitasaka, T., Misawa, K., Fujiwara, M., Kajita, Y., Wakabayashi, T., Mori, K.: Anatomical annotation on vascular structure in volume rendered images. Comput. Med. Imaging Graph. 37(2), 131–141 (2013)

    Article  Google Scholar 

  22. Ropinski, T., Praßni, J., Roters, J., Hinrichs, K.H.: Internal labels as shape cues for medical illustration. Proc. VMV 7, 203–212 (2007)

    Google Scholar 

  23. Ebert, L.C., Flach, P., Schweitzer, W., Leipner, A., Kottner, S., Gascho, D., Thali, M.J., Breitbeck, R.: Forensic 3D surface documentation at the Institute of Forensic Medicine in Zurich–Workflow and communication pipeline. J. Forens. Radiol. Imaging 5, 1–7 (2016)

    Article  Google Scholar 

  24. Filko, D., Cupec, R., Nyarko, E.K.: Wound measurement by RGB-D camera. Mach. Vis. Appl. 29(4), 633–654 (2018)

    Article  Google Scholar 

  25. Shamata, A., Thompson, T.: Determining the effectiveness of noncontact three-dimensional surface scanning for the assessment of open injuries. J. Forens. Sci. 65(2), 627–635 (2020)

    Article  Google Scholar 

  26. Pimentel, J.F., Freire, J., Murta, L., Braganholo, V.: A survey on collecting, managing, and analyzing provenance from scripts. ACM Comput. Surv. (CSUR) 52(3), 1–38 (2019)

    Article  Google Scholar 

  27. Bray, T., Paoli, J., Sperberg-McQueen, C.M., Maler, E., Yergeau, F.: Extensible markup language (xml) 1.0 5th edition. W3C Recommendation (2008)

  28. Gao, S., Sperberg-McQueen, C.M., Thompson, H.: W3C xml schemade finition language (xsd) 1.1 part 1: structures. W3C Recommendation 5 (2012). http://www.w3.org/TR/xmlschema11-1

  29. Schroeder, W., Martin, K., Lorensen, B.: The visualization toolkit. Kitware Inc (2020). http://www.kitware.com

  30. Ackerman, M.J.: The visible human project. Proc. IEEE 86(3), 504–511 (1998)

    Article  Google Scholar 

Download references

Acknowledgements

This work has been supported in part by JSPS KAKENHI under the Grants-in-Aid for Scientific Research (A) Nos. 26240015, 17H00737, and 21H04916.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Issei Fujishiro.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, B., Asayama, Y., Boussejra, M.O. et al. FORSETI: a visual analysis environment for authoring autopsy reports in extended legal medicine mark-up language. Vis Comput 37, 2951–2963 (2021). https://doi.org/10.1007/s00371-021-02201-7

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00371-021-02201-7

Keywords

Navigation